BAB II

TINJAUAN PUSTAKA

2.1 Landasan Teori

2.1.1 Malware Android

Malware android adalah perangkat lunak berbahaya yang dirancang khusus untuk merusak atau mengakses perangkat android tanpa izin pengguna. Android sebagai sistem operasi ponsel pintar yang sangat populer, sering menjadi target utama bagi para penjahat cyber yang mencoba menyebarkan malware untuk mencuri data pribadi, menyebabkan kerusakan, atau menghasilkan keuntungan finansial. Penyebaran malware dapat terjadi melalui berbagai metode, termasuk serangan phishing melalui email, rekayasa sosial, dan pengunduhan perangkat lunak yang tidak aman. Pernyataan tersebut menunjukkan bahwa bahkan perusahaan seperti Google, yang sering berada di garis depan dalam menjaga ekosistem android bebas dari malware, telah gagal mengambil tindakan untuk mencegah malware (Ma et al., 2019).

Berdasarkan prinsip serangannya, *malware android* dapat dibedakan menjadi tiga kategori (Rana et al., 2018):

- Serangan berbasis perangkat keras, biasanya penyerang akan menggunakan perintah atau operasi tertentu untuk merusak perangkat keras, memasukkan *firmware* atau mengubah perangkat keras agar menjadi tidak normal. Tindakan tersebut biasanya terjadi dengan membuat *backdoor*, *intercepting data*, manipulasi perangkat keras, memasukkan *firmware* atau melakukan *cloning* perangkat keras dan layanan.
- b Serangan berbasis perangkat lunak, merupakan serangan yang biasanya dilakukan dengan mengunggah aplikasi *android* yang mengandung *malware* ke *mobile app market*, yang nantinya aplikasi tersebut akan di *install* oleh pengguna *android* kedalam perangkat. Tindakan tersebut biasanya bertujuan untuk penyadapan data, membuat *botnet* atau mendapatkan keuntungan berupa uang dari korban.

c Serangan berbasis *firmware*, merupakan motif serangan yang biasanya dilakukan oleh penyerang dengan memodifikasi atau mengubah program perangkat dengan mendapatkan hak kontrol atau *backdoor* sehingga mereka dapat membuat *crash* atau mengambil alih kendali sistem.

Perkembangan teknologi yang cukup cepat menjadi salah satu faktor maraknya *cybercrime* dengan menggunakan *malware*. Jenis-jenis *malware* android semakin beragam seiring berkembangnya teknologi dan banyaknya pengguna android. Secara umum, berikut adalah beberapa jenis *malware* yang dapat menyerang sistem operasi android (Sinambela et al., 2020):

a Ransomware

Malware yang termasuk dalam kategori sangat berbahaya apabila sampai masuk dan menginfeksi perangkat pengguna. Pasalnya, untuk jenis *malware* yang satu ini ketika berhasil masuk kedalam perangkat korban, maka akan langsung mengenkripsi data pada perangkat tersebut kemudian penyerang akan meminta tebusan untuk membuka kunci enkripsi tersebut.

b *Adware*

Adware merupakan malware iklan yang bekerja dengan menampilkan iklan di perangkat pengguna secara masif. Tujuannya, tentu saja keuntungan bagi penyebar malware dari klik iklan yang muncul di perangkat korbannya, karena malware ini menampilkan iklan yang tidak diinginkan pada perangkat secara terus-menerus. Malware ini mengumpulkan informasi pribadi korban, seperti nomor telepon, alamat email, dan lokasi geografis, tanpa sepengetahuan korban. Malware ini merupakan salah satu jenis malware yang juga paling banyak dipakai oleh penjahat cyber, karena mampu mencuri informasi sensitif dari perangkat korban.

c Spyware

Malware yang menyamar sebagai aplikasi yang bermanfaat untuk pengguna, namun sebenarnya memiliki tujuan jahat, seperti mengambil alih kontrol perangkat korban atau mengakses data pribadi korban. *Malware* ini

umumnya terpasang pada perangkat dengan menyerupai aplikasi data atau *game* populer.

d Worm

Malware yang menyebar dari satu perangkat ke perangkat lainnya melalui jaringan, seperti *WiFi* atau *Bluetooth*. Perangkat yang kerap mengakses akses internet dengan *WiFi* publik sangat rentan menjadi korban *malware* seperti ini.

e Trojan

Merupakan *malware* yang menyamar menjadi aplikasi yang berguna. Setelah di *install*, *Trojan* dapat mencuri data sensitif, merusak sistem, atau membuka pintu bagi serangan lanjutan.

f Virus

Malware yang menyebar melalui aplikasi atau file yang terinfeksi dan dapat merusak sistem operasi pada perangkat. *Virus* dapat menyebabkan kerusakan pada data dan program yang ada di perangkat korban.

g Banking Trojan

Merupakan *malware* yang dirancang untuk mencuri informasi keuangan pengguna, seperti nomor kartu kredit, nomor rekening bank, dan kata sandi. *Malware* ini biasanya menyebar melalui *email phishing* atau situs web palsu.

h Backdoor

Malware yang memungkinkan penyerang untuk mengambil alih kontrol perangkat dari jarak jauh tanpa sepengetahuan korban. *Malware* ini biasanya menyebar melalui aplikasi yang diunduh dari sumber yang tidak terpercaya.

2.1.2 Dynamic Analysis

Dynamic analysis atau analisis dinamis merupakan salah satu teknik dalam analisa malware yang digunakan untuk mempelajari perilaku malware dengan menjalankannya pada lingkungan yang diawasi dengan tujuan yaitu untuk memahami cara kerja malware. Analisa ini berfokus pada identifikasi pola aktivitas aplikasi dan jaringan mencurigakan seperti identifikasi logcat error,

shared memory dirty, system calls, process, dll. yang disebabkan oleh adanya serangan malware (Islam et al., 2023). Terdapat berbagai teknik pengamatan yang dilakukan pada analisis dinamis, diantaranya (Almomani et al., 2022):

- a Function Call Monitoring, yaitu pengamatan dilakukan dengan menangkap function call. Beberapa informasi yang coba dipelajari dari proses hooking ini adalah tentang API (Application Programm Interface), System Calls, dan Windows Native API.
- b Function Parameter Analysis, merupakan pengamatan yang dilakukan dengan mempelajari parameter atau return value dari sebuah function.

 Dengan cara ini maka akan diketahui keterhubungan antara function-function yang ada pada sampel malware.
- c Information Flow Tracking. Pengamatan ini dilakukan untuk mempelajari alur data pada sampel malware. Data yang akan dipelajari diberi tanda terlebih dahulu (tainted). Pengamatan information flow tracking ini dilakukan untuk mempelajari informasi seperti direct data dependencies, address dependencies, control flow dependencies, implicit information flow, Implementation of information flow tracking systems, dll.
- d *Instruction Trace*, merupakan pengamatan yang dilakukan terhadap instruksi apa saja yang dijalankan sampel pada saat sampel dianalisa.
- e Autostart Extensibility Points: Autostart extensibility points (ASEPs) merupakan mekanisme pada sistem yang mengijinkan sebuah program untuk dijalankan secara otomatis setiap kali sistem operasi melakukan booting. Pengamatan terhadap ASEPs sangat penting untuk mengumpulkan informasi tentang sampel malware.

2.1.3 Preprocessing Data

Preprocessing data adalah serangkaian langkah dan teknik yang dilakukan pada data sebelum dimasukkan ke dalam model machine learning atau algoritma analisis data. Preprocessing data merupakan bagian kritis dalam rangkaian tahap data mining yang perlu dilakukan sebelum dilakukan analisis data. Tahapan ini melibatkan sejumlah langkah esensial seperti pembersihan data, transformasi data,

integrasi data, normalisasi data, imputasi data yang hilang, mengatasi kelas yang tidak seimbang, *feature scaling*, identifikasi *noise*, dan berbagai tugas reduksi data, seperti pemilihan fitur, pemilihan sampel, diskritisasi, dan sebagainya (García et al., 2015).

Preprocessing data yang cermat dapat meningkatkan performa model klasifikasi dengan memastikan bahwa data yang digunakan untuk melatih dan menguji model adalah data yang berkualitas dan sesuai dengan kebutuhan analisis. Berikut adalah beberapa tahapan secara umum dalam preprocessing data pada proses klasifikasi (Kamiran & Calders, 2012):

- a Pembersihan Data (*Data Cleaning*)
 - Identifikasi dan penanganan data yang hilang, data yang tidak valid, atau data yang tidak relevan. Ini melibatkan penghapusan atau penggantian nilai yang hilang dan penanganan *outliers*.
- b Transformasi Data (Data Transformation)

Transformasi variabel-variabel tertentu untuk memenuhi asumsi model atau untuk meningkatkan interpretabilitas. Contoh termasuk normalisasi, pengkodean kategori, atau transformasi logaritmik.

- c Integrasi Data (Data Integration)
 - Penggabungan data dari berbagai sumber atau tabel menjadi satu dataset yang utuh. Hal ini diperlukan ketika data terdistribusi di beberapa tempat atau memiliki format yang berbeda.
- d Normalisasi Data
 - Memastikan bahwa nilai-nilai dalam variabel memiliki skala yang seragam. Ini dapat mencegah variabel dengan skala besar mendominasi proses pembelajaran model.
- e Penanganan Data yang Hilang (*Missing Data Handling*)

 Identifikasi dan penanganan nilai-nilai yang hilang dalam dataset. Ini dapat melibatkan penghapusan baris atau kolom yang memiliki nilai yang hilang, atau mengisi nilai yang hilang dengan teknik imputasi.
- f Identifikasi dan Penanganan Noise

Identifikasi dan penanganan *noise* atau gangguan dalam data yang dapat mempengaruhi performa model. *Noise* dapat berasal dari data yang tidak akurat atau ekstrem.

g Reduksi Dimensi (Dimensionality Reduction)

Pemilihan fitur yang relevan atau reduksi dimensi data untuk mengurangi kompleksitas model dan mempercepat proses pembelajaran. Metode ini mencakup pemilihan fitur dan pemampatan dimensi.

h Sampling Data

Jika data tidak seimbang antara kelas-kelas dalam tugas klasifikasi biner, teknik *sampling* seperti *oversampling* atau *undersampling* dapat digunakan untuk mencapai keseimbangan yang lebih baik.

i Pemilihan Fitur (Feature Selection)

Memilih subset fitur yang paling informatif dan relevan untuk tugas klasifikasi. Hal ini membantu meningkatkan efisiensi model dan mencegah *overfitting*.

j Diskritisasi

Merubah variabel kontinu menjadi variabel kategori untuk keperluan tertentu.

k Ekstraksi Fitur (Feature Extraction)

Merubah data menjadi representasi fitur yang lebih kompak dan informatif. Contoh teknik ekstraksi fitur termasuk *Principal Component Analysis* (PCA) atau teknik ekstraksi informasi lainnya.

2.1.4 Split Data

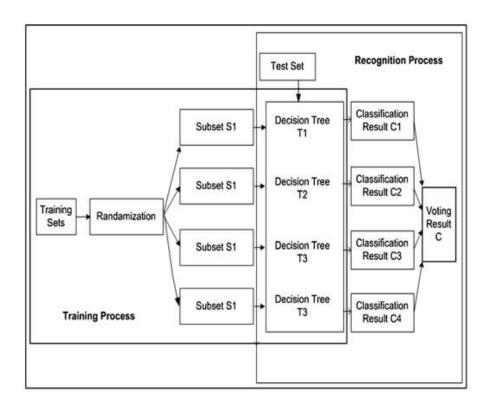
Split data atau pembagian data merupakan suatu metode dalam machine learning yang digunakan untuk membagi dataset menjadi tiga kelompok, yakni data pelatihan, data pengujian, dan data validasi. Proses pemisahan dataset menjadi tiga bagian ini dilakukan guna mengevaluasi performa model dan kemampuan algoritma dalam memahami pola dari data. Sementara beberapa penelitian menyatakan bahwa pemisahan dataset hanya perlu dilakukan menjadi data pelatihan dan data pengujian (Birba, 2020).

Data pelatihan digunakan untuk memberikan model pemahaman yang baik terhadap pola dan tren dalam dataset, kemudian data pengujian digunakan untuk menguji performa model pada data yang belum pernah dilihat sebelumnya, memberikan ukuran sejauh mana model dapat menghasilkan prediksi yang akurat. Adanya data validasi, dalam beberapa kasus, membantu dalam proses *fine-tuning* model dan mengoptimalkan parameter agar model dapat menggeneralisasi dengan baik. Proses pembagian data ini sering menggunakan perbandingan tertentu, seperti 80% data pelatihan - 20% data pengujian atau 70% data pelatihan - 30% data pengujian, untuk memastikan adanya representasi yang seimbang antara data pelatihan dan pengujian. Teknik *cross-validation* juga digunakan sebagai alternatif, membagi data menjadi beberapa lipatan untuk menghasilkan estimasi kinerja model yang lebih konsisten dan dapat dipercaya (Nguyen et al., 2021).

2.1.5 Classification

Classification atau klasifikasi merupakan teknik pendekatan machine learning yang digunakan untuk memprediksi kelas pada suatu data. Model klasifikasi mempelajari pola dari data pelatihan yang telah diberikan dan kemudian menggunakan pengetahuan ini untuk memprediksi kelas atau label dari data baru. Klasifikasi dikategorikan sebagai salah satu masalah yang paling banyak dipelajari oleh para peneliti di bidang machine learning, namun di sisi lain teknik ini memiliki tantangan tersendiri misalnya imbalance class, missing value, noise ataupun fitur yang tidak relevan (Soofi & Awan, 2017).

. Proses klasifikasi melibatkan tahap pelatihan, validasi, dan pengujian, di mana model mempelajari pola dari data pelatihan, diuji pada data validasi untuk memastikan kinerjanya, dan akhirnya digunakan untuk memprediksi kelas pada data yang tidak pernah dilihat sebelumnya. Evaluasi model klasifikasi melibatkan metrik seperti *confusion matrix, precision, recall, F1-score*, dan *Receiver Operating Characteristic* (ROC) *curve*. Klasifikasi tetap menjadi alat yang efektif dalam membuat prediksi dan pengambilan keputusan berbasis data, meskipun terdapat beberapa tantangan dalam prosesnya. Metode klasifikasi dibagi kedalam tiga jenis yaitu (Neeraj et al., 2020):


- a Discriminant or Discriminator Analysis, jenis analisis ini menemukan ciri pembeda yang jelas di antara ciri-ciri yang diberikan untuk klasifikasi. Linear dan kuadrat adalah dua jenis analisis diskriminan utama yang digunakan untuk klasifikasi
- b *Probabilistic Methods*, merupakan metode yang mengkategorikan fitur-fitur berdasarkan probabilitasnya untuk tetap berada di kelas tertentu. Metode ini dibagi menjadi *Logistic Regression* dan *Naive-Bayesian Classifiers*.
- c *Model Based Classifier*, merupakan metode klasifikasi dengan pemodelan atau membangun algoritma *machine learning*. Model *machine learning* yang biasa digunakan untuk klasifikasi adalah *K-Nearest Neighbor* (KNN), *Decision Tree, Support Vector Machine* (SVM), *Random Forest* dan *Artificial Neural Network* (ANN).

2.1.6 Algoritma Random Forest

Algoritma *Random Forest* pertama kali dikemukakan oleh Leo Breiman dari *University of California* pada tahun 2001. Algoritma ini terdiri dari gabungan beberapa pengklasifikasian dasar (*decision tree*) yang sepenuhnya bersifat independen antara satu sama lain. Operasi acak (*random operation*) diperkenalkan dalam proses pembangunan model, termasuk pemilihan subset sampel dan subset fitur, untuk menjamin independensi setiap pohon keputusan, meningkatkan akurasi klasifikasi dan mendapatkan kemampuan generalisasi yang lebih baik. Penggunaan operasi acak dalam pemilihan subset sampel adalah dengan menarik subset sebagai set pelatihan dari sampel asli dengan metode *bagging*. Operasi acak di hutan acak secara signifikan meningkatkan kinerja model klasifikasi, karena proses pembuatan setiap pohon keputusan sangat cepat, paralelisasi dalam pembuatan hutan acak dapat diwujudkan, sehingga meningkatkan kecepatan klasifikasi secara signifikan (Breiman, 2020).

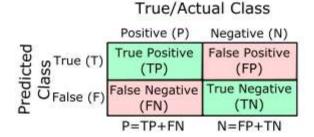
Algoritma *Random Forest* termasuk kedalam model *ensemble learning* yang merupakan gabungan dari pohon keputusan (*decision tree*) yang bertujuan untuk meningkatkan performa model. Algoritma ini menggunakan metode *bagging* (*bootstrap aggregating*) dimana beberapa model klasifikasi serupa dibangun

secara independen pada subset acak dari data pelatihan. Prediksi dari masing-masing model dihasilkan, dan hasil akhirnya diambil melalui *voting* atau *averaging* (Aung et al., 2009). Kemampuannya dalam menggabungkan hasil prediksi dari berbagai pohon, *Random Forest* mencapai tingkat ketangguhan yang tinggi terhadap *overfitting* dan performa yang baik dalam berbagai tugas klasifikasi dan regresi. Secara praktiknya, keunggulan *Random Forest* terletak pada kemampuannya untuk menangani sejumlah besar fitur dan data dengan baik, kemudian memiliki parameter-parameter seperti jumlah pohon, kedalaman pohon, dan jumlah fitur yang digunakan dapat disesuaikan untuk meningkatkan performa dan fleksibilitas model (Parmar et al., 2019). Berikut merupakan konsep klasifikasi pada model *Random Forest*:

Gambar 2. 1 Konsep *Random Forest Classifier* (Parmar et al., 2019)

Gambar 4.4 merupakan konsep dari proses klasifikasi pada model *Random Forest*, untuk penjelasan secara detailnya adalah sebagai berikut :

- a. Dataset akan dibagi menjadi data *training* dan *testing*. Data *training* akan digunakan untuk membangun model *Random Forest*, sedangkan untuk data *testing* akan digunakan untuk pengujian model.
- b. Data dibagi kedalam beberapa subset untuk menguji beberapa model *decision tree* sesuai dengan nilai parameter *n_estimators* atau jumlah pohon keputusan yang sudah ditetapkan.
- c. Hasil klasifikasi dari beberapa model *decision tree* akan melalui tahap *voting* untuk menentukan *class* atau label dari data hasil klasifikasi.
- d. Data *testing* kemudian akan dimasukkan untuk menguji performa model yang sudah dibangun sebelumnya.


Rumus yang digunakan untuk memutuskan bagaimana node pada pohon keputusan bercabang. Rumus ini menggunakan kelas dan probabilitas untuk menentukan Gini setiap cabang pada sebuah node, menentukan cabang mana yang lebih mungkin terjadi. Di sini, p_i mewakili frekuensi relatif kelas yang Anda amati dalam kumpulan data dan c mewakili jumlah kelas. Berikut persamaan 2.1 yang merupakan rumus dalam memutuskan bagaimana node pada pohon keputusan bercabang.

Gini = 1 -
$$\sum_{i=1}^{C} (p_i)^2$$
 (2. 1)

2.1.7 Confusion Matrix

Confusion Matrix merupakan suatu metode evaluasi kinerja yang umum digunakan dalam konteks masalah klasifikasi untuk mengukur akurasi suatu model dengan output berupa dua kelas atau lebih, dengan tujuan untuk menentukan kebenaran atau kesalahan prediksi. Confusion Matrix terdiri dari empat kategori, meliputi True Positive (TP), False Positive (FP), True Negative (TN), dan False Negative (FN), yang mencakup nilai aktual dan nilai prediksi. Hal

ini digunakan untuk menyajikan hasil evaluasi performa model dengan memberikan gambaran lebih rinci tentang keberhasilan atau kegagalan model dalam mengklasifikasikan instan data ke dalam berbagai kategori (Tharwat, 2018).

Gambar 2. 2 Confusion Matrix

True Positive (TP) merujuk pada data aktual yang memiliki nilai benar (P) dan diprediksi dengan hasil positif, sementara False Positive (FP) mengacu pada data yang memiliki nilai salah (N) namun diprediksi sebagai hasil positif. True Negative (TN) adalah data yang memiliki nilai benar (P) dan diprediksi sebagai hasil negatif, sedangkan False Negative (FN) merupakan data dengan nilai salah (N) dan diprediksi sebagai hasil negatif. Setelah memperoleh nilai untuk keempat kategori dalam confusion matrix, langkah selanjutnya adalah menghitung nilai accuracy, precision, recall, dan F-measure. Formulanya dapat ditemukan sebagai berikut.

$$Accuracy = \frac{TP+TN}{(TP+TN+FP+FN)}$$
 (2. 2)

$$Precision = \frac{TP}{(TP + FP)}$$
 (2. 3)

$$Recall = \frac{TP}{(TP+FN)}$$
 (2. 4)

$$F - Measure = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$
 (2. 5)

2.2 Penelitian Terkait

2.2.1 State of The Art

Berdasarkan rumusan masalah dan tujuan penelitian, maka dilakukan literatur review dari penelitian sebelumnya yang berkaitan dengan klasifikasi malware android dengan pendekatan algoritma machine learning. Beberapa penelitian sebelumnya yang sudah dilakukan adalah, sebagai berikut:

Tabel 2. 1 State of The Art

	Penulis,				
No	Tahun	Judul	Algoritma	Dataset	Hasil
	Penelitian				
1.	(Hadiprakoso	Analisis Statis Deteksi	SVM, Naive Bayes,	Malware DREBIN	Studi ini melakukan deteksi malware
	et al., 2022)	Malware Android	Decision Tree,		menggunakan metode analisis statis dan
		Menggunakan Algoritma	KNN		algoritma machine learning dengan dataset
		Supervised Machine			malware DREBIN. Beberapa algoritma
		Learning			supervised learning digunakan pada
					penelitian ini. Hasilnya, model dengan
					performa terbaik dihasilkan oleh algoritma
					SVM dengan akurasi mecapai 96,94% dan
					nilai AUC 95%.

2.	(Tjahjadi &	Klasifikasi Malware	Random Forest	pe-files-malwares	Penelitian ini bertujuan untuk mengetahui
	Santoso,	Menggunakan Teknik		•	performa algoritma Random Forest untuk
	2023)	Machine Learning			klasifikasi. Dataset yang diambil dalam
					penelitian ini diperoleh dari internet
					dengan judul pe-files-malwares yang
					terdiri dari 19611 baris dan 79 kolom.
					Hasil penelitian menunjukan performa
					model dengan mendapat nilai accuracy,
					precision, recall, f1-score sebesar 99%.
3.	(Chitayae et	Identifikasi Malware	KNN	Malware / Benign	Penelitian ini menerapkan algoritma K-
	al., 2023)	pada Android		Permission	Nearest Neighbor (KNN) untuk klasifikasi
		menggunakan Algoritma		Android	malware pada aplikasi android. Penelitian
		K-Nearest Neighbor			ini menggunakan data Android
					Malware/Benign Permissions berupa file
					CSV yang diperoleh dari Kaggle.com.
					Hasil penelitian menunjukkan bahwa
					klasifikasi malware dan bukan malware
					pada izin aplikasi android dapat dilakukan
					dengan baik menggunakan algoritma KNN

					yang menghasilkan akurasi sebesar 77% dengan penerapan <i>feature selection</i> .
4.	(Diana et al.,	Komparasi Algoritma	Naïve Bayes,	Canadian Institute	Pembelajaran mesin yang pada penelitian
	2022)	Naïve Bayes, Logistic	Logistic Regression	for Security,	ini adalah <i>Naïve Bayes</i> , <i>Logistic</i>
		Regression Dan Support	Dan Support Vector	Google Play dan	Regression dan Support Vector Machine.
		Vector Machine pada	Machine	APK Pure	Hasil uji akurasi menunjukkan algoritma
		Klasifikasi File			Naive Bayes mampu mengklasifikasi
		Application Package Kit			keluarga malware dengan tingkat akurasi
		Android Malware			97.75%, sedangkan algoritma <i>Logistic</i>
					Regression akurasinya 88.75% dan akurasi
					Support Vector Machine mencapai
					96,75%.
5.	(Efriyani &	Klasifikasi Malware	RNN	DasmalWerk	Klasifikasi malware android dengan
	Panjaitan,	Dengan Menggunakan			algoritma RNN dan penerapan fitur N-
	2021)	Recurrent Neural			grams, didapatkan hasil accuracy sebesar
		Network			86% dan f1-score 85% dari jumlah data
					sebanyak 215 data <i>malware</i> dan bukan
					malware.

6.	(Refhaldo et	Klasifikasi Aplikasi	C5.0	Android Malware	Penelitian ini bertujuan untuk
	al., 2022)	Malware Android		Dataset for ML	mendapatkan hasil analisa menggunakan
		Menggunakan Algoritma			algoritma C5.0 dalam klasifikasi sebuah
		C5.0			aplikasi yang teridentifikasi sebagai
					malware. Dengan teknik pengujian split
					validation 80:20 dimana 80% sebagai data
					training dan 20% sebagai data testing,
					maka didapatkan hasil akurasi sebesar
					94,96% pada data training dan 94,23%
					pada data testing.

7.	(Turnip et	Klasifikasi Malware	Random Forest	Virusshare	Kerangka pada penelitian ini meliputi pra
	al., 2023)	Android Aplikasi			pemrosesan data, klasifikasi menggunakan
		Menggunakan Random			algoritma Random Forest, dan test APK
		Forest Berdasarkan Fitur			terhadap model yang diperoleh. Pada
		Statik			penelitian ini, Synthetic Minority Over-
					Sampling Technique (SMOTE) diterapkan
					untuk menyelesaikan masalah
					ketidakseimbangan kelas pada dataset.
					Berdasarkan hasil penelitian, akurasi
					terbaik dihasilkan pada kombinasi
					SMOTE sebesar 92.26% dan dapat
					mengklasifikasi APK yang mengandung
					malware ke dalam 13 kelas jenis malware

8.	(Ramadhan	Komparasi Algoritma	Neural Network dan	Android	Penelitian ini bertujuan untuk
	et al., 2023)	Neural Network dan K-	KNN	Permission	membandingkan performa dua algoritma
		Nearest Neighbor Dalam		Dataset	machine learning, yaitu Neural Network
		Mendeteksi Malware			dan K-Nearest Neighbors (KNN). Hasil
		Android			penelitian menunjukkan bahwa Neural
					Network mencapai performa terbaik
					dengan akurasi 97%, presisi 97%, recall
					97%, dan F1-score 97%. Sementara itu,
					KNN memiliki performa yang sedikit
					lebih rendah dengan akurasi 95%, presisi
					96%, recall 95%, dan F1-score 95%
9.	(Rafrastara et	Deteksi Malware	Stacking Methods	Malware static and	Penelitian ini menerapkan metode stacking
	al., 2023)	menggunakan Metode	(Neural Network,	dynamic features	dalam klasifikasi data dengan tujuan untuk
		Stacking berbasis	Random Forest,	VxHeaven and	meningkatkan performa. Hasilnya, metode
		Ensemble	KNN dan Logistic	Virus Total Data	stacking dengan meta classifier Logistic
			Regression)	Set	Regression berhasil mengungguli 4
					algoritma yang dieksekusi secara individu.
					Kemudian stacking dengan logistic

-					and the second s
					regression juga dibandingkan dengan
					metode stacking lain, namun dengan meta
					classifier yang berbeda-beda, yaitu
					Random Forest, KNN dan Neural
					Network. Hasilnya, metode stacking
					dengan meta classifier Logistic Regression
					masih menjadi yang terbaik, dengan
					tingkat akurasi serta recall sebesar 98.7%
10.	(Sitorus et	Analisis Deteksi	SVM dan Random	Dataset	Penelitian ini melakukan perbandingan
	al., 2021)	Malware Android	Forest	Malware/Benign	antara model SVM dengan model Random
		menggunakan metode		permission	Forest dalam proses klasifikasi data, serta
		Support Vector Machine		Android	membandingkan hasil akurasi dengan
		& Random Forest			penelitian sebelumnya. Klasifikasi
					menggunakan model SVM menghasilkan
					nilai precision 97%, nilai recall 97%, dan
					nilai f1-score 97%, dan akurasi 96,23%,
					kemudian pada model Random Forest
					menghasilkan nilai precision 99%, nilai
					recall 99%, nilai f1-score 99%, dan akurasi

					98,99%. Kesimpulannya, model <i>Random Forest</i> lebih unggul dari model SVM.
11.	(Yogaswara,	Klasifikasi Malware	KNN	CICInversAndMal	Model KNN digunakan untuk klasifikasi
	2021)	Family Menggunakan		2019	malware. Metode C5.0 digunakan dalam
		Metode K-Nearest			preprocessing data kemudian data di uji
		Neighbor (K-NN)			pada model klasifikasi KNN. Pembagian
					data sebesar 90% untuk data training dan
					10% data testing mendapat hasil terbaik
					pada performa model dengan nilai recall
					65% dan precision 83%.
12.	(Zakariya &	Desain Penilaian Risiko	Ensemble methods	CIC-AndMal2017	Penggunaan ensemble methods bertujuan
	Ramli, 2023)	Privasi Pada Aplikasi	(Decision Tree,		untuk meningkatkan performa model
		Seluler Melalui Model	KNN, Random		dalam proses klasifikasi data. Hasil
		Machine Learning	Forest)		penelitian menunjukkan bahwa penerapan
		Berbasis Ensembel			ensemble learning dengan algoritma
		Learning Dan Multiple			klasifikasi Decision Tree (DT), K-Nearest
		Application Attributes			Neighbor (KNN), dan Random Forest
					(RF) memiliki performa model yang lebih
					baik dibandingkan dengan menggunakan

					algoritma klasifikasi tunggal, dengan
					accuracy sebesar 95.2%, nilai precision
					93.2%, nilai F1-score 92.4%, dan True
					Negative Rate (TNR) sebesar 97.6%.
13.	(Alomari et	A Comparative Analysis	LightGBM, RF,	CICMalDroid2020	Penelitian ini melakukan perbandingan 13
	al., 2023)	of Machine Learning	Extra Trees	(Dynamic	model dalam pengklasifikasian pada
		Algorithms for Android	Classifier, Gradient	Features)	dataset CICMalDroid2020. Selain itu,
		Malware Detection	Boosting Classifier,		penelitian ini menerapkan teknik SMOTE,
			DT, KNN, Ada		normalisasi skor-z pada fitur numerik dan
			Boost Classifier,		menerapkan PCA untuk memperbaiki
			Linear Discriminant		masalah pada data dan mencapai akurasi
			Analysis, Ridge		maksimum. Hasilnya menunjukkan bahwa
			Classifier, Logistic		model LightGBM adalah model dengan
			Regression, Naive		akurasi terbaik di antara algoritma lain
			Bayes, SVM,		yang diuji pada semua tahapan. Skor F1
			Quadratic		terbaik yang dicapai adalah 95,47% oleh
			Discriminant		algoritma <i>LightGBM</i> .
			Analysis		

14.	(Islam et al.,	Android Malware	Ensemble Methods	CCCS-CIC-	Penelitian ini menggunakan ensemble
	2023)	Classification Using	(Random Forest	AndMal-2020	learning dengan menggabungkan 6
		Optimum Feature	(RF), K-nearest	(Dynamic	algoritma klasifikasi serta menerapkan
		Selection And Ensemble	Neighbor (KNN),	Analysis)	beberapa tahapan pada preprocessing data
		Machine Learning	Multi-layer		seperti missing data imputation, random
			Perceptron (MLP),		oversampling, outlier handling, feature
			Decision Tree (DT),		scaling, transformation, feature selection,
			Support Vector		dan dimensionality reduction. Hasil akhir
			Machine (SVM)		dari evaluasi model ensemble learning ini
			and Logistic		didaptkan nilai akurasi sebesar 95%
			Regression (LR))		setelah mengecualikan 60,2% fitur.
15.	(Batouche &	A Comprehensive	SVM, Tree	CCCS-CIC-	Model SVM, Tree Classifier, Random
	Jahankhani,	Approach to Android	Classifier, Random	AndMal-2020	Forest, Naive Bayes, dan KNN di gunakan
	2021)	Malware Detection	Forest, Naive	(Static Analysis)	dalam proses klasifikasi. Penelitian ini
		Using Machine Learning	Bayes, KNN		bertujuan untuk membandingkan performa
					model dalam mengklasifikasi data.
					Hasilnya, performa model yang terbaik
					didapatkan oleh algoritma Random Forest
					dengan nilai akurasi 89%.

16.	(Shatnawi et	An Android Malware	SVM, KNN, Naive	CICInversAndMal	Penelitian ini membandingkan beberapa
	al., 2022)	Detection Approach	Bayes	2019 (Static	algoritma machine learning yiatu SVM,
		Based on Static Feature		Feature)	KNN, dan Naive Bayes untuk
		Analysis Using Machine			pengklasifikasian pada dataset
		Learning Algorithms			CICInversAndMal2019 berdasarkan static
					feature. Tahap preprocessing, feature
					extraction, dan feature selection
					diterapkan pada penelitian ini. Hasilnya
					model SVM menghasilkan performa
					terbaik dibandingkan model lain, dengan
					nilai akurasi sebesar 94,36%.

17.	(Almahmoud	ReDroidDet: Android	RNN	Kombinasi dari	Penelitian ini mengusulkan algoritma
	et al., 2021)	Malware Detection		dataset CIC-	RNN untuk deteksi malware berdasarkan
		Based on Recurrent		AndMal2017,	static feature pada dataset yang sudah di
		Neural Network		CIC-	kombinasi. Feature extraction dan
				InvesAndMal2019	selection diterapkan pada preprocessing
				, dan CIC-	data. Hasilnya model RNN menghasilkan
				MalDroid2020.	performa lebih baik dari penelitian
				(Static Feature)	sebelumnya dengan nilai akurasi mencapai
					98,58%.

2.2.2 Matriks Penelitian

Tabel 2.2 mencakup matriks penelitian yang berfokus dalam klasifikasi *malware android* dengan menggunakan pendekatan algoritma machine learning. Matriks tersebut dapat memberikan informasi tentang perbedaan penelitian yang akan dilakukan dengan penelitian terdahulu.

Tabel 2. 2 Matriks Penelitian

	Penulis, Tahun Penelitian		Ruang Lingkup									
No		Judul	Analisis		Metode Klasifikasi		Parameter Uji					
			Statis	Dinamis	Ensemble Learning	Model Klasifikasi Tunggal	Accuracy	Precision	Recall	F- Measure	ROC Curve / AUC	
1.	(Fauzi, 2023)	Klasifikasi Serangan Malware Android Berdasarkan Hasil Analisis Fitur Dinamis Menggunakan Algoritma Random Forest	_	V	1	-	V	V	V	V		
2.	(Hadiprakoso et al., 2022)	Analisis Statis Deteksi Malware Android Menggunakan Algoritma Supervised Machine Learning	V	-	_	√	V	_	-	ı	V	
3.	(Tjahjadi & Santoso, 2023)	Klasifikasi Malware Menggunakan Teknik Machine Learning	V	_	V	_	V	√	√	$\sqrt{}$	_	

4.	(Chitayae et al., 2023)	Identifikasi Malware pada Android menggunakan Algoritma K-Nearest Neighbor	V	_	_	V	V	√	√	√	_
5.	(Diana et al., 2022)	Komparasi Algoritma Naïve Bayes, Logistic Regression Dan Support Vector Machine pada Klasifikasi File Application Package Kit Android Malware	V	-	-	√	V	√	√	V	√
6.	(Efriyani & Panjaitan, 2021)	Klasifikasi Malware Dengan Menggunakan Recurrent Neural Network	V	-	_	V	V	-	_	V	_
7.	(Refhaldo et al., 2022)	Klasifikasi Aplikasi Malware Android Menggunakan Algoritma C5.0	√	_	_	√	V	V	V	_	_
8.	(Turnip et al., 2023)	Klasifikasi Malware Android Aplikasi Menggunakan Random Forest Berdasarkan Fitur Statik	V	_	V	-	V	√	√	√	_
9.	(Ramadhan et al., 2023)	Komparasi Algoritma Neural Network dan K-Nearest Neighbor Dalam Mendeteksi Malware Android	√	_	_	V	V	V	V	V	_

10.	(Rafrastara et al., 2023)	Deteksi Malware menggunakan Metode Stacking berbasis Ensemble	-	V	V	-	V		V	_	_
11.	(Sitorus et al., 2021)	Analisis Deteksi Malware Android menggunakan metode Support Vector Machine & Random Forest	V	-	V	_	V	V	√	√	_
12.	(Yogaswara, 2021)	Klasifikasi Malware Family Menggunakan Metode K-Nearest Neighbor (K-NN)	V	_	_	V	_	√	V	-	_
13.	(Zakariya & Ramli, 2023)	Desain Penilaian Risiko Privasi Pada Aplikasi Seluler Melalui Model Machine Learning Berbasis Ensembel Learning Dan Multiple Application Attributes	V	-	V	-	√	√	√	√	_
14.	(Alomari et al., 2023)	A Comparative Analysis of Machine Learning Algorithms for Android Malware Detection	V	_	_	V	V	√	√	√	V
15.	(Islam et al., 2023)	Android Malware Classification Using Optimum Feature Selection And Ensemble Machine Learning	Ι	V	V	_	V	V	V	V	-

16.	(Batouche & Jahankhani, 2021)	A Comprehensive Approach to Android Malware Detection Using Machine Learning	V	-	V	_	V	V	√	V	-
17.	(Shatnawi et al., 2022)	An Android Malware Detection Approach Based on Static Feature Analysis Using Machine Learning Algorithms	V	-	-	V	V	V	V	V	-
18.	(Almahmoud et al., 2021)	ReDroidDet: Android Malware Detection Based on Recurrent Neural Network	V	-	_	V	V	V	√	V	-

Berdasarkan matriks penelitian pada Tabel 2.2, penelitian yang akan dilakukan adalah klasifikasi *malware android* dengan menggunakan metode *ensemble learning Random Forest* dengan parameter uji yaitu *accuracy, precicion, recall,* dan *F-Measure*. Perbedaan antara penelitian yang akan dilakukan dengan penelitian sebelumnya, yaitu terletak pada penggunaan dataset yang merupakan dataset *malware android* terbaru berdasarkan fitur hasil analisis dinamis. Metode klasifikasi yang digunakan pada penelitian ini yaitu *ensemble learning* dan merupakan saran dari penelitian sebelumnya. Penelitian ini akan berfokus pada perbaikan performa model *ensemble learning* (Random Forest) dalam pengklasifikasian malware android berdasarkan analisis fitur dinamis pada dataset CCCS-CIC-AndMal2020.