3 METODE PENELITIAN

3.1 Lokasi Penelitian

Penelitian dilakukan di Jalan Siliwangi, Kecamatan Tawang, Kota Tasikmalaya. Titik lokasi yang ditinjau diutamakan didepan gerbang utama Universitas Siliwangi sampai ke perempatan Jalan BKR. Jenis material saluran terbuat dari batu dan beton. Lokasi penelitian merupakan jalanan strategis di daerah perkotaan dengan banyaknya pusat perbelanjaan, bangunan akademik dan pemukiman di sekitaran Universitas Siliwangi yang setiap harinya jalan tersebut cukup padat.

Gambar 3.1 Lokasi Penelitian

3.2 Teknik Pengumpulan Data

3.2.1 Data Primer

Data primer merupakan data yang diambil langsung dari kondisi yang ada di lapangan. Data primer ini untuk mengetahui kondisi eksisting dan dimensi saluran drainase di lokasi yang nantinya akan ditinjau debit limpasannya.

3.2.2 Data Sekunder

Data sekunder merupakan data tambahan yang diperlukan dalam analisis drainase perkotaan untuk menunjang atau melengkapi data primer diantara:

a. Data DEM (Digital Elevation Model)

Data DEM ini digunakan untuk membuat peta topografi dan streamflow yang nantinya akan digunakan unutk menentukan daerah tangkapan air (DTA) pada lokasi penelitian.

b. Data Curah Hujan

Data curah hujan yang diguanakn merupakan data yang didapat dari stasiun hujan terdekat dengan daerah tangkapan air, diantaranya stasiun hujan Wiriadinata, stasiun hujan cimulu dan stasiun hujan Kawalu selama 10 tahun.

c. Peta Jaringan Drainase Lokasi

Jaringan saluran berperan besar dalam mempengaruhi debit puncak dan lama berlangsungnya debit puncak tersebut. Peta jaringan drainase yang sudah ada kemudian dibandingkan dengan hasil survey langsung di lapangan.

3.3 Alat dan Bahan

Penelitian pada saluran drainase di JL. Siliwangi ada beberapa alat dan bahan yang digunakan untuk menunjang proses penelitian diantaranya:

- 1. Theodolite, untuk mengukur ketinggian elevasi lokasi penelitian
- 2. Rambu Ukur, untuk mengukur beda tinggi antara garis bidik dengan permukaan tanah.
- 3. Meteran, untuk mengukur dimensi saluran
- 4. Laptop
- 5. Alat Tulis
- 6. Software Arcgis untuk menentukan daerah tangkapan air
- 7. *Software* EPA SWMM 5.2 untuk mensimulasikan pengaruh limpasan hujan terhadap sistem drainase
- 8. Google Earth untuk mendapatkan citra satelit.
- 9. Gps

3.4 Analisis Data

Gambar 3.2 Flowchart Analisis Data

3.4.1 Penentuan Catchment Area

Catchment Area ditentukan dengan bantuan software Arcgis seperti dijelaskan dalam tinjauan pustaka untuk mengetahui luas Catchment area di lokasi penelitian. Tahapan-tahapan penentuan catchment area disajikan dalam flowchart berikut ini:

Gambar 3.3 Flowchart Penentuan Catchment Area

3.4.2 Analisis Hidrologi

Analisis hidrologi merupakan langkah awal untuk mengelola data curah hujan yang bertujuan untuk mengetahui intensitas hujan di lokasi penelitian. Tahapantahapan perhitungan analisis hidrologi diawali dengan mengolah data curah hujan, lalu menghitung analisis frekuensi yang terdapat beberapa metode yaitu Distribusi Normal, Distribusi Log Normal, Distribusi Gumbel, dan Distribusi Log Person III, selanjutnya bisa dilihat tahapan-tahapan perhitungan analisis hidrologi lainnya pada *flowchart* berikut ini:

Gambar 3.4 Flowchart Perhitungan Analisis Hidrologi

3.4.3 Analisis Debit Banjir Rencana

Metode rasional adalah metode yang digunakan dalam perhtungan debit banjir rencana dimana harus diketahui nilai koefisien limpasan, luas wilayah serta intensitas hujan yang dipengaruhi oleh waktu konsentrasi. Koefisien limpasan pada *catchment area* ditentukan dengan menganalisis tata guna lahan kemudian diambil nilai rata-ratanya. Sedangkan waktu konsentrasi adalah waktu mengalirnya air dari titik terjauh sampai titik yang akan ditinjau. Tahap-tahap dalam perhitungan debit banjir rencana disajikan pada gambar dibawah ini:

Gambar 3.5 Flowchart Perhitungan Debit Banjir Rencana

3.4.4 Analisis Kapasitas Saluran Drainase

Analisis kapasitas saluran drainase dilakukan dua metode yaitu analisis dengan perhitungan manual dan pemodelan dengan menggunakan *software* EPA SWMM 5.2. Hasil dari kedua metode ini selanjutnya dibandingkan untuk menentukan alternatif penanganan banjir.

3.4.4.1 Analisis Kapasitas

Analisis hidrolika dilakukan untuk mengetahui apakah kapasitas saluran eksisting lebih besar atau lebih kecil dari debit banjir rencana. Rumus yang digunakan dalam analisis kapasitas saluran adalah rumus *manning* dengan data yang dibutuhkan merupakan data fisik seperti dimensi saluran, kekasaran saluran dan kemiringan. Nilai debit banjir rencana dan debit saluran eksisting kemudian dibandingkan. Jika nilai debit banjir eksisting lebih jecil dari debit banjir rencana, maka dapat diketahui dimensi saluran tidak dapat menampung debit limpasan yang terjadi.

Gambar 3.6 Flowchart Analisis Hidrolika

3.4.5 Pemodelan dengan Aplikasi EPA SWMM 5.1

Analisis banjir dengan menggunakan aplikasi EPA SWMM 5.2 membantu dalam melakukan analisis kapasitas penampang saluran dalam menampung debit hujan dengan periode ulang tertentu. Data-data yang dibutuhkan untuk pemodelan ini diantaranya, data intensitas hujan, peta jaringan drainase, dimensi saluran, elevasi dan persentase limpasan. Berikut langkah – langkah dalam melakukan analisis atau simulasi banjir dengan aplikasi EPA SWMM 5.2 disajikan dalam *flowchart* Gambar 3.7 dibawah ini.

Gambar 3.7 Flowchart Pemodelan dengan Menggunakan Aplikasi EPA SWMM 5.2

a. Input Backdrop

Langkah awal dalam pemodelan pada penelitian ini yaitu dengan membuka aplikasi SWMM. *Input Backdrop* dilakukan dengan memasukkan data gambar objek lokasi penelitian pada menu *view* (*Backrop*). *Backdrop* yang digunakan dapat dilihat pada Gambar 3.8 Langkah selanjutnya dapat dilihat pada Gambar 3.9 adalah memasukkan koordinat agar *backdrop* sesuai.

Gambar 3.8 Tampilan Saat Memasukkan Backdrop

Map Dimensions			×
Lower Left		Upper Right	
X-coordinate:	192496.65	X-coordinate:	194381.04
Y-coordinate:	9186321.79	Y-coordinate:	9187394.35
-Map Units			
◯ Feet	Meters	O Degrees	○ None
<u>A</u> uto-Size	ОК	Cancel	<u>H</u> elp

Gambar 3.9 Tampilan saat Memasukkan Koordinat Backdrop

b. Menentukan Subcatchment

Pembagian *subcatchment* merupakan langkah awal dalam penggunaan SWMM. Pembagian tersebut sesuai dengan daerah tangkapan air (DTA) yang ditentukan berdasarkan pada elevasi lahan dan pergerakan limpasan ketika terjadi hujan. Data yang dimasukkan berupa luas area, persentase limpasan, persentase kemiringan, lebar *subcatchment* dan titik pembuang. Berdasarkan peta topografi dan arah aliran air (*Run-off*) menuju saluran, pada lokasi penelitian ini pembagian menjadi 35 *subctchment*. Data yang dimasukkan luas dan lebar lahan dibantu

menggunakan *software* Arcgis, persentase kemiringan dari kontur Kota Tasikmalaya dan *Impervious* lahan.

PARAMETER SUBCATCHMENT												
Subcatchment	Outfall	A (ha)	Width (m)	Slope (%)	Impervious (%)	N-Impervious	N-Pervious					
DTA 1	J1	1.34	198	6.330	65	0.5	0.1					
DTA 2	J2	4.41	265	6.655	80	0.6	0.2					
DTA 3	J5	1.11	130	8.985	40	0.6	0.1					
DTA 4	J6	2.65	27,3	1.634	32	0.5	0.3					
DTA 5	J9	2.32	171	2.823	40	0.55	0.1					
DTA 6	Out1	0.44	114	1.004	15	0.6	0.1					
DTA 7	J11	0.52	48,2	3.945	15	0.5	0.1					
DTA 8	J16	2.88	353	3.322	50	0.9	0.1					
DTA 9	J25	1.78	149	3.489	20	0.5	0.3					
DTA 10	J10	1.39	106	7.903	5	0.4	0.3					
DTA 11	J12	0.38	58,3	18.711	0	0.1	0.3					
DTA 12	J12	2.3	60,9	7.004	100	0.9	0.1					
DTA 13	J14	0.5	68,3	15.932	0	0.1	0.3					
DTA 14	J14	1.8	64,4	9.757	100	0.9	0.1					
DTA 15	J20	0.33	74,7	9.940	15	0.5	0.3					
DTA 16	J22	1.55	218	2.701	100	0.9	0.1					
DTA 17	J19	0.37	98,3	10.207	65	0.4	0.2					
DTA 18	J28	0.29	31,1	2.380	65	0.4	0.2					
DTA 19	J30	0.36	34,2	2.188	20	0.4	0.1					
DTA 20	J29	0.37	34,1	2.962	20	0.4	0.1					
DTA 21	J26	0.47	59,6	4.634	100	0.55	0.2					
DTA 22	J26	0.29	57,3	1.948	100	0.55	0.2					
DTA 23	J24	0.64	81,5	5.803	100	0.5	0.2					
DTA 24	J27	0.19	35,6	8.226	100	0.5	0.2					
DTA 25	J32	2.78	221	7.216	30	0.1	0.1					
DTA 26	J32	0.72	151	4.029	10	0.3	0.1					
DTA 27	J24	3.15	95,1	4.613	75	0.3	0.2					
DTA 29	J33	2.69	107	4.640	75	0.6	0.2					
DTA 30	J32	0.59	94,9	2.385	40	0.3	0.2					
DTA 31	J32	0.2	56,4	2.632	15	0.1	0.1					
DTA 32	J32	0.38	50	3.845	20	0.2	0.1					
DTA 33	J33	1.7	108	5.640	60	0.3	0.2					
DTA 34	J36	1.39	163	2.744	20	0.3	0.1					
DTA 35	Out2	0.38	86,2	4.061	60	0.3	0.2					

 Tabel 3.1 Pembagian Subcatchment

Property	Value	Property	Value			
Name	DTA1	N-Perv	0.1			
X-Coordinate	192716.723	Dstore-Imperv	0.05			
Y-Coordinate	9186841.534	Dstore-Perv	0.05			
Description		%Zero-Imperv	25			
Tag		Subarea Routing	OUTLET			
Rain Gage	R1	Percent Routed	100			
Outlet	J1	Infiltration Data	HORTON			
Area	1.34	Groundwater	NO			
Width	198	Snow Pack				
% Slope	0.5	LID Controls	0			
% Imperv	25	Land Uses	0			
N-Imperv	0.01	Initial Buildup	NONE			
M Don	0.1	Curb Longth	0			

Gambar 3.10 Tampilan Data Subcatchment

c. Pemodelan Skema Jaringan Drainase

Pemodelan didasarkan pada jaringan drainase yang ada dilapangan. Lalu objek yang dimasukkan berupa *junction* adalah data elevasi bisa dilihat pada Gambar 3.12, *conduit* adalah dimensi saluran bisa dilihat pada Gambar 3.13 dan *outfalls*.

Gambar 3.11 Tampilan Model Jaringan Drainase

Gambar 3.12 Tampilan Data Junction

Gambar 3.13 Tampilan Data *Conduit*

Setelah menginput data parameter DTA, *junction, conduit* dan *outfalls,* Langkah selanjutnya adalah data curah hujan yang telah diolah menjadi intensitas hujan jam – jaman, diinputkan sebagai *rain gage* pada *time series*.

Gambar 3.14 Tampilan Data Rain Gage dan Time Series

d. Pemodelan Aliran pada Saluran Drainase (*Running Simulation*)

Setelah semua data dimasukkan, maka pemodelan dapat dilakukan dengan menjalankan simulasi (*running*). Simulasi dapat dikatakan berhasil jika *continuity error* < 10%. Aliran permukaan atau limpasan terjadi ketika intensitas hujan melebihi kapasitas *infiltrasi*. Hasil simulasi dapat dilihat dari stasus *report*, menggunakan maps, menggunakan grafik maupun menggunakan profil aliran sebagai berikut:

1. *Status Report* berisikan rangkuman informasi (*Summary Result*) yang berguna mengenai hasil simulasi diantaranya kualitas simulasi, total hujan yang *terinfiltrasi* dan melimpas, node-node yang terjadi banjir serta waktu terjadi banjir.

🗄 Status Report			-	⊐ ×
Analysis Options				
Flow Units	CMS			
Process Models:				
Rainfall/Runoff	YES			
RDII	NO			
Snowmelt	NO			
Groundwater	NO			
Flow Routing	YES			
Ponding Allowed	NO			
Water Quality	NO			=
Infiltration Method	HORTON			
Flow Routing Method	DYNWAVE			
Surcharge Method	EXTRAN			
Starting Date	04/20/2024 00:00:0	0		
Ending Date	04/20/2024 12:00:0	0		_
Antecedent Dry Days	0.0			
Report Time Step	00:15:00			
Wet Time Step	00:05:00			
Dry Time Step	01:00:00			
Routing Time Step	20.00 sec			
Variable Time Step	YES			
Maximum Trials	8			
Number of Threads	1			
Head Tolerance	0.001500 m			
*****	Volume	Depth		
Runoff Quantity Continuity	hectare-m	mm		

Total Precipitation	7.013	164.400		
Evaporation Loss	0.000	0.000		
Infiltration Loss	0.869	20.367		
Surface Runoff	6.031	141.369		
Pi1 Carnes	0 101	2 021		_
				×

Gambar 3.15 Tampilan Status Repot

2. Simulasi

Tingkat luapan (*Overflow*) pada saat simulasi berbeda-beda tergantung pada warna yang muncul setelah dilakukan *run*. Jika warna biru sampapi hijau, berarti saluran masih aman dan tidak terjadi luapan. Sedangkan jika simulasi berwarna kuning dan merah maka artinya saluran terjadi luapan (*overflow*).

Gambar 3.16 Tampilan Simulasi

3. Perbedaam Grafik

Penggunaan grafik sangat membantu untuk memahami hasil simulasi satu/beberapa objek secara utuh dalam keseluruhan waktu simulasi yang

diterapkan. Grafik aliran bisa menunjukkan bahwa pada beberapa jam, aliran pada sutu saluran telah mencapai kapasitas maksimum yang ditunjukkan oleh grafik yang mendatar dan konstan. Hal ini mengindikasikan bahwa pada jam-jam tersebut, kapasitas saluran telah terlampaui sehingga terjadi luapan.

Gambar 3.17 Tampilan Hasil Simulasi menggunakan Grafik

4. Profil aliran (profil plot)

Profiil aliran menunjukkan perubahan kedalaman aliran dalam potongan memanjang saluran dan juga luapan yang terjadi pada saluran.

Gambar 3.18 Tampilan Profil Aliran

3.5 Pemodelan Alternatif Penangan Banjir

Pemodelan alternatif penanganan banjir dapat dilakukan jika penyebab terjadinya banjir sudah diketahui. Pada penelitian ini, solusi yang akan digunakan adalah dengan system polder yang meliputi kolam retensi dan pompa. Jika terdapat beberapa saluran yang masih berpotensi terjadinya *overflow* maka, dilakukan perubahan dimensi saluran yang disimulasikan dengan menggunakan *software* EPA SWMM 5.2.

Berikut data curah hujan harian maksimum dari stasiun hujan Lanud, stasiun Cimulu dan Stasiun Kawalu.

Tahum	Ion	Eab	Man	4.000	Mai	Inn	Int	Aget	Sam	Olt	Neu	Nov Des	Tahunan	
Tanun	Jan	reb	Mar	Apr	Mei	Juli	Jui	Agst	Sep	OKI	NOV	Des	Total (mm/thn)	R24 (mm)
2014	40	45	89	75	75	75	119	50	0	30	100	129	826	129
2015	98	183	51	89	24	25	0	0	2	0	97	71	639	183
2016	86	93	73	0	85	21	84	60	93	58	158	40	851	158
2017	75	108	46	62	30	29	7	5	105	67	105	116	752	116
2018	60	138	55	63	65	35	0	5	13	72	110	36	649	138
2019	59	91	91	75	74	0	7	1	0	5	15	73	488	91
2020	54	54	54	97	71	85	23	15	35	96	62	74	718	97
2021	66	57	124	0	0	93	39	16	113	158	76	80	821	158
2022	73	175	78	115	44	80	40	72	86	75	64	68	967	175
2023	112	34	40	58	65	39	149	0	1	7	77	47	626	149

Tabel 3.2 Data Curah Hujan Stasiun Lanud

Tabel 3.3 Data Curah Hujan Stasiun Cimulu

Tahun	Ion	Eab	Man	4.00	Mai	Inn	T ₁₁ 1	Acat	Sam	Olt	Neu	Das	Tahunan	
Tanun	Jan	reb	wiar	Apr	Mei	Jun	Jui	Agst	Sep	OKI	NOV	Des	Total (mm/thn)	R24 (mm)
2014	57	90	52	47	47	183	15	0	0	0	96	92	679	183
2015	57	90	52	47	47	183	15	0	0	0	96	63	650	183
2016	69	98	79	70	66	23	111	70	87	84	92	52	901	111
2017	94	134	55	78	114	39	105	5	104	62	75	77	942	134
2018	55	44	32	90	39	25	0	0	12	41	111	29	478	111
2019	74	102	53	116	95	14	11	1	1	1	29	88	585	116
2020	75	69	36	108	105	70	30	17	41	72	75	57	755	108
2021	82	52	72	68	69	76	37	60	68	73	53	82	792	82
2022	72	63	66	111	42	64	32	52	113	84	70	49	818	113
2023	125	82	56	83	58	53	152	2	4	1	66	112	794	152

Tabel 3.4 Data	Curah Huja	n Stasiun	Kawalu
----------------	------------	-----------	--------

Tahun	Ion	Eab	Mon	4.000	Mai	Ium	Int	Acet	C	Olt	Neu	Dec	Tahunan	
Tanun	Jan	гео	war	Apr	Mei	Jun	Jui	Agst	Sep	OKI	NOV	Des	Total (mm/thn)	R24 (mm)
2014	65	50	60	71	87	107	108	104	2	11	78	128	871	128
2015	9	99	64	37	23	23	4	0	0	0	78	59	396	99
2016	85	78	74	67	53	27	55	58	82	39	108	47	773	108
2017	114	112	32	71	106	31	12	4	55	98	96	70	801	114
2018	27	115	95	39	51	42	1	4	22	43	76	44	559	115
2019	76	89	60	102	45	25	11	0	1	0	11	140	560	140
2020	89	45	28	66	60	96	25	11	18	79	106	95	718	106

Tohun	Ion	Eab	Man	4.00	Mai	Ine	Int	Acet	Son	Okt	Sen Okt	Neu	Dec	Tahun	an
Tanun	Jan	reb	Mar	Apr	Mei	Jun	Jui	Agst	Sep	OKI	NOV	Des	Total (mm/thn)	R24 (mm)	
2021	80	45	27	33	70	88	45	27	43	121	111	66	756	121	
2022	31	54	105	118	43	43	25	86	79	69	65	70	788	118	
2023	61	25	55	68	68	59	124	2	0	11	34	61	568	124	

Gambar 3.19 Skema Jaringan Saluran Drainase Eksisting