BAB 3

PROSEDUR PENELITIAN

3.1. Metode Penelitian

Metode penelitian merupakan rangkaian aktivitas dalam penelitian yang berlandaskan argumen dasar, pandangan filosofis dan ideologi, persoalan dan permasalahan yang dihadapi (Sukmadinata, 2019, p. 52). Penelitian ini merupakan penelitian kuantitatif, yaitu penelitian yang kesimpulannya diambil melalui pengujian hipotesis secara statistik (Djaali, 2020, p. 3).

Penggunaan metode eksperimen dalam penelitian kuantitatif ini untuk mengetahui efektivitas pembelajaran berdiferensiasi berdasarkan kecerdasan logis matematis terhadap kemampuan literasi matematika, sehingga metode ini dikatakan memiliki sifat menguji (*validation*) (Sukmadinata, 2019, p. 57).

3.2. Variabel Penelitian

Terdapat tiga variabel yang diklasifikasikan menjadi dua jenis variabel dalam penelitian ini, yaitu sebagai berikut.

(1) Variabel bebas

Variabel bebas atau variabel *independent*, merupakan variabel yang diperkirakan mempengaruhi variabel terikat (Djaali, 2020, p. 28). Variabel bebas dalam penelitian ini adalah pembelajaran berdiferensiasi dan kecerdasan logis matematis. Kedua variabel tersebut menjadi variabel bebas karena tidak dipengaruhi oleh variabel lain.

(2) Variabel terikat

Variabel terikat atau variabel *dependent*, yaitu variabel yang diperkirakan menjadi hasil dari pengaruh variabel bebas (Djaali, 2020, p. 28). Variabel terikat dalam penelitian ini adalah kemampuan literasi matematika siswa. Hal ini dikarenakan kemampuan literasi matematika dipengaruhi oleh pembelajaran berdiferensiasi berdasarkan kecerdasan logis matematis.

3.3. Populasi dan Sampel

3.3.1. Populasi

Populasi merupakan jumlah seluruh individu, makhluk hidup ataupun benda yang akan diamati atau diteliti (Nisfiannoor dalam Agustianti *et al.*, 2022, p. 68). Populasi pada penelitian ini yaitu siswa kelas VIII di SMP Negeri 1 Kota Tasikmalaya berjumlah 358 siswa yang dibagi ke dalam 11 kelas. Populasi ini dipilih karena sesuai dengan kriteria penelitian penulis, yang didapat melalui proses pengamatan dan wawancara selama observasi.

3.3.2. Sampel

Sampel merupakan bagian dari populasi yang mewakili populasi (Rukajat, 2018, p. 86). Sampel pada penelitian ini dipilih dengan teknik *purposive sampling* untuk mengambil satu kelas sebagai sampel penelitian. Teknik *purposive sampling* merupakan teknik menentukan sampel melalui pertimbangan sebuah alasan (Sugiyono, 2019, p. 133). Dalam penelitian ini, sampel ditentukan dengan pertimbangan secara situasional di SMP Negeri 1 Kota Tasikmalaya. Melalui pertimbangan tersebut, terpilih kelas VIII J sebagai sampel penelitian.

3.4. Desain Penelitian

Penelitian ini menggunakan metode eksperimen jenis *pra experimental*, dengan desain *one group pretest-posttets design*. Pada desain ini terdapat satu kelompok penelitian yang diberikan *pretest* dan *posttest*. Bentuk penelitian untuk desain *one group pretest-posttets design* sebagai berikut.

Tabel 3.1. Desain Penelitian One Group Pretest-Posttest Design

Kelompok	Pretest	Perlakuan	Postest
A	0	X	0

Sumber: (Sukmadinata, 2019, p. 208)

Keterangan:

A : sampel penelitian

0 : pretest dan posttest kemempuan literasi matematika

X : penerapan pembelajaran berdiferensiasi berdasarkan kecerdasan logis matematis

3.5. Teknik Pengumpulan Data

Teknik pengumpulan data merupakan proses menghimpun data untuk membuktikan pernyataan hipotesis (Rukajat, 2018, p. 6). Dalam penelitian ini, instrumen tes digunakan untuk menghimpun data penelitian. Terdapat dua instrumen tes, tes untuk mengukur kecerdasan logis matematis berupa soal uraian berjumlah lima soal dan pilihan ganda berjumlah tiga soal serta tes berupa soal uraian sebanyak satu soal pada *pretest* dan *posttest* kemampuan literasi matematika.

3.6. Instrumen Penelitian

Menurut Sugiyono (2019), instrumen penelitian adalah pengukur untuk mengamati fenomena alam atau sosial. Penelitian ini menggunakan instrumen berupa tes, yaitu tes kecerdasan logis matematis dan tes kemampuan literasi matematika.

(1) Tes Kecerdasan Logis Matematis

Pada penelitian ini, jenis tes kecerdasan logis matematis yang digunakan berupa lima soal uraian dan tiga soal pilihan ganda. Berikut kisi-kisi dari tes kecerdasan logis matematis.

Tabel 3.2. Kisi-kisi Tes Kecerdasan Logis Matematis

Indikator	Deskripsi	Nomor item	Bentuk soal	Jumlah item
Mampu melakukan	Siswa mampu menggunakan			
berbagai operasi	dan menyelesaikan berbagai	1, 2	Uraian	2
matematis	operasi hitung matematika			
Memahami pola dan	Siswa mampu mengurutkan			
hubungan	dan memahami pola atau			
	hubungan suatu bilangan	3, 4	Uraian	2
	sehingga dapat menemukan			
	nilai suku yang dicari			
Memahami konsep	Siswa mampu memahami			
yang bersifat	dan menggunakan konsep	5	Uraian	1
kuantitatif	matematika serta manipulasi	3	Oralali	1
	angka			

Indikator	Deskripsi	Nomor item	Bentuk soal	Jumlah item
Mampu melakukan penalaran logis	Siswa mampu membuat kesimpulan dengan berpikir secara deduktif atau induktif, ataupun aturan logika	6, 7, 8	Pilihan ganda	3
Jumlah			8	

Tes ini diberikan kepada siswa sebelum pembelajaran dilakukan, sebagai diagnostik awal untuk mengelompokkan dan menyesuaikan materi pengajaran bagi siswa. Sebelum tes kecerdasan logis matematis diberikan, terlebih dahulu dilakukan validasi oleh para ahli. Pengujian validitas instrumen dilakukan dengan meminta dua orang dosen Jurusan Pendidikan Matematika untuk menelaah apakah materi instrumen sudah sesuai dengan indikator yang digunakan. Validitas instrumen yang digunakan adalah validitas muka (*face validity*) dan validitas isi (*content validity*). Validitas muka merupakan uji kebenaran alat ukur (Neolaka, 2014, p. 116). Sedangkan validitas isi merupakan uji kecocokan isi dengan materi yang akan diuji dan indikator yang digunakan (Neolaka, 2014, p. 116). Adapun hasil validasi menurut pendapat ahli sebagai berikut.

Tabel 3.3. Hasil Validasi Soal Tes Kecerdasan Logis Matematis

Validator	Hasil Validasi
Validator 1	Tambahkan kalimat perintah untuk soal pada nomor 1 dan
	nomor 2
Validator 2	Sederhanakan informasi yang diketahui pada soal nomor 5

(2) Soal Tes Kemampuan Literasi Matematika

Soal tes kemampuan literasi matematika pada penelitian ini berupa soal uraian yang mencakup keseluruhan indikator kemampuan literasi matematika dan disesuaikan dengan materi pembelajaran yang disampaikan. Berikut kisi-kisi dalam membuat soal tes kemampuan literasi matematika.

Tabel 3.4. Kisi-Kisi Tes Kemampuan Literasi Matematika

Capaian Pembelajaran	Tujuan Pembelajaran	Indikator Soal	Indikator Kemampuan Literasi Matematika
Peserta didik dapat menentukan dan menafsirkan rerata (mean), median, modus, dan jangkauan (range) dari data tersebut untuk menyelesaikan masalah (termasuk membandingkan suatu data terhadap kelompoknya, membandingkan dua kelompok data, memprediksi, membuat keputusan). Mereka dapat menginvestigasi kemungkinan adanya perubahan pengukuran pusat tersebut akibat	1. Menentukan ukuran pemusatan data 2. Menyelesaikan masalah sehari- hari yang berkaitan dengan ukuran pemusatan data 3. Menentukan ukuran penyebaran data 4. Menyelesaikan masalah sehari- hari yang berkaitan dengan ukuran penyebaran	Disajikan permasalahan yang berkaitan dengan ukuran pemusatan data dan ukuran penyebaran data	 Mengidentifikasi aspek matematika dari suatu masalah dalam konteks dunia nyata Menerjemahkan masalah ke dalam bahasa matematika Merancang dan menerapkan strategi untuk menemukan solusi matematika Menerapkan fakta, aturan, algoritma, atau rumus matematika dalam perhitungan Menginterpretasikan hasil matematis ke dalam konteks dunia nyata
perubahan data	data		

Sebelum diberikan kepada siswa, soal tes kemampuan literasi matematika terlebih dahulu divalidasi oleh para ahli, yaitu dengan meminta dua orang dosen Jurusan Pendidikan Matematika untuk menelaah apakah materi instrumen sudah sesuai dengan indikator yang digunakan. Validitas instrumen yang digunakan adalah validitas muka (*face validity*) dan validitas isi (*content validity*). Validitas muka merupakan uji kebenaran alat ukur (Neolaka, 2014, p. 116). Sedangkan validitas isi merupakan uji kecocokan isi dengan materi yang akan diuji dan indikator yang digunakan (Neolaka, 2014, p. 116). Adapun hasil validasi menurut pendapat ahli sebagai berikut.

Tabel 3.5. Hasil Validasi Soal Tes Kemampuan Literasi Matematika

Validator	Hasil Validasi
Valitador 1	Soal data digunakan dan tidak ada revisi
Validator 2	Soal data digunakan dan tidak ada revisi

3.7. Teknik Analisis Data

Pada penelitian ini, analisis data dilakukan untuk menganalisis tes kecerdasan logis matematis siswa, hipotesis, dan pertanyaan penelitian.

3.7.1. Tes Kecerdasan Logis Matematis

Hasil tes kecerdasan logis matematis siswa diberi penilaian sesuai dengan kriteria penskoran. Pemberian skor menggunakan rubrik yang sesuai dengan kebutuhan evaluasi. Rubrik yang digunakan merupakan modifikasi dari penelitian Salsabilla dan Hidayati (2021). Total skor diperoleh dengan mengalikan jumlah nomor soal setiap indikator dengan skor tertinggi dan skor maksimal diperoleh dengan menjumlahkan total skor seluruh indikator kecerdasan logis matematis. Berikut pedoman penskoran tes kecerdasan logis matematis siswa pada penelitian ini.

Tabel 3.6. Pedoman Penskoran Tes Kecerdasan Logis Matematis

Indikator	Pedoman Penilaian Jawaban Siswa	No. Soal	Skor	Skor Total
Mampu melakukan	Siswa tidak dapat menjawab pertanyaan		0	
berbagai operasi	Siswa kurang tepat dalam menjawab pertanyaan	1,2	1	4
matematis	Siswa tepat dalam menjawab pertanyaan		2	
Memahami pola	Siswa tidak dapat menjawab pertanyaan		0	
dan hubungan	Siswa kurang tepat dalam menjawab pertanyaan	3,4	1	4
	Siswa tepat dalam menjawab pertanyaan		2	
Memahami konsep	Siswa tidak dapat menjawab pertanyaan		0	
yang bersifat	Siswa kurang tepat dalam menjawab pertanyaan	5	1	2
kuantitatif	Siswa tepat dalam menjawab pertanyaan		2	
Mampu melakukan	Siswa tidak dapat menentukan jawaban yang		0	
penalaran logis	tepat	6,7,8	U	3
	Siswa dapat menentukan jawaban yang tepat		1	
Skor maksimal			13	

Sumber: (Salsabilla & Hidayati, 2021)

Berdasarkan tabel, skor maksimal yang didapat siswa jika menjawab dengan benar semua adalah 13, maka untuk menentukan nilai akhir siswa yaitu dengan mengubah skor yang diperoleh siswa ke dalam penilaian skala seratus menurut Kunandar (dalam Indahwati & Abdullah, 2019), sebagai berikut.

Nilai siswa =
$$\frac{skor\ yang\ didapat\ siswa}{skor\ maksimal} \times 100$$

Sumber: (dalam Indahwati & Abdullah, 2019)

Nilai tersebut kemudian dikelompokkan menjadi tiga kategori menurut Arikunto (Lestari & Effendi, 2022) sebagai berikut.

Tabel 3.7. Kategorisasi Kecerdasan Logis Matematis

Kategori	Batas Nilai
Tinggi	$X \ge (\bar{X} + SD)$
Sedang	$(\bar{X} - SD) < X < (\bar{X} + SD)$
Rendah	$X \le (\bar{X} - SD)$

Sumber: (Lestari & Effendi, 2022)

3.7.2. Analisis Data untuk Menjawab Hipotesis

(1) Statistika Deskriptif

Statistika deskriptif dilakukan untuk mendeskripsikan data sampel dengan menghitung banyak sampel, nilai tertinggi, nilai terendah, rata-rata, median, modus, standar deviasi, dan varians.

Selain itu, terdapat Uji Gain Ternormalisasi. Hasil *pretest* dan *posttes* kemampuan literasi matematika siswa dianalisis dengan menghitung nilai N-*Gain*. Data N-*Gain* digunakan untuk melihat peningkatan kemampuan literasi matematika siswa. Rumus N-*Gain* menurut Meltzer (dalam Rahmah *et al.*, 2023) sebagai berikut.

$$N - Gain = \frac{skor\ posttest - skor\ pretest}{skor\ ideal - skor\ pretest}$$

Interpretasi nilai N-Gain menurut Hake sebagai berikut:

Tabel 3.8. Interpretasi Nilai N-Gain

Nilai N-gain	Kriteria
N-gain > 0,70	Tinggi
$0.30 \le \text{N-}gain \le 0.70$	Sedang
N-gain < 0,30	Rendah

Sumber: (Dalila et al., 2022; Rahmah et al., 2023)

Selain itu, nilai dapat diubah ke dalam persentase kemudian dapat dikategorikan sesuai dengan pembagian tafsiran efektivitas menurut Hake sebagai berikut.

 Persentase N-Gain (%)
 Tafsiran

 < 40</td>
 Tidak efektif

 40 - 55
 Kurang efektif

 56 - 75
 Cukup efektif

 > 76
 Efektif

Tabel 3.9. Tafsiran Efektivitas N-Gain

Sumber: (Sabila & Isroah, 2021)

(2) Uji Prasyarat

Sebelum pengujian hipotesis maka dilakukan uji prasyarat melalui uji normalitas. Uji normalitas yang digunakan yaitu uji *Shapiro-Wilk* dengan taraf signifikansi 5% atau 0,05. Hipotesis untuk uji normalitas sebagai berikut:

H₀: data sampel berasal dari populasi berdistribusi normal

H_a: data sampel berasal dari populasi berdistribusi tidak normal

Kriteria pengujian yang digunakan adalah jika nilai signifikansi, (Sig.) ≥ 0.05 maka H_0 diterima. Sebaliknya jika (Sig.) < 0.05 maka H_0 ditolak.

(3) Uji Hipotesis

Setelah dilakukan uji prasyarat dapat dilanjutkan dengan uji hipotesis menggunakan *One Sample t-Test* jika data berdistribusi normal. Namun jika data tidak berdistribusi normal maka dilanjutkan dengan uji non parametrik Uji *Chi Square* Satu Sampel. Adapun rumusan hipotesisinya menurut Sugiyono (2019, p. 225) sebagai berikut.

 $H_0: \mu \le 0.3$

 $H_{a}: \mu > 0.3$

Keterangan:

μ : rata-rata peningkatan (N-Gain) kemampuan literasi matematika siswa

Taraf signifikan untuk uji hipotesis adalah 5% atau 0,05. Dengan kriteria pengujian yang digunakan jika nilai Sig. (2-tailed) $\geq 0,05$ maka H_o diterima. Sebaliknya jika nilai Sig. (2-tailed) < 0,05 maka H_o ditolak.

3.7.3. Analisis Data untuk Menjawab Pertanyaan Penelitian

Hasil tes kemampuan literasi matematika siswa diberi penilaian sesuai dengan kriteria penskoran. Pemberian skor menggunakan rubrik yang sesuai dengan kebutuhan

evaluasi. Rubrik yang digunakan merupakan modifikasi dari penelitian Salsabilla dan Hidayati (2021). Berikut pedoman penskoran tes kemampuan literasi matematika siswa.

Tabel 3.10. Pedoman Penskoran Tes Kemampuan Literasi Matematika

Indikator			
Kemampuan Literasi	Pedoman Penilaian Jawaban Siswa	Skor	
Matematika			
Mengidentifikasi	Siswa tidak dapat menuliskan yang diketahui dan	0	
aspek matematika	ditanyakan dari suatu masalah		
dari suatu masalah	Siswa kurang tepat dalam menuliskan yang diketahui	1	
dalam konteks dunia	dan ditanyakan dari suatu masalah		
nyata yang diberikan	Siswa dapat menuliskan yang diketahui dan ditanyakan	2	
	dari suatu masalah dengan tepat		
Menerjemahkan	Siswa tidak dapat menerjemahkan masalah ke dalam	0	
masalah ke dalam	bahasa matematika		
bahasa matematika	Siswa kurang tepat dalam menerjemahkan masalah ke	1	
	dalam bahasa matematika		
	Siswa dapat menerjemahkan masalah ke dalam bahasa	2	
	matematika dengan tepat dan benar		
Merancang dan	Siswa tidak dapat menentukan strategi untuk	0	
menerapkan strategi	menemukan solusi matematika		
untuk menemukan	Siswa kurang tepat menentukan strategi untuk	1	
solusi matematika	menemukan solusi matematika		
	Siswa tepat menentukan strategi untuk menemukan	2	
	solusi matematika dengan		
Menerapkan fakta,	Siswa tidak dapat menerapkan fakta, aturan, algoritma,	0	
aturan, algoritma,	atau rumus matematika dalam perhitungan		
atau rumus	Siswa kurang tepat dalam menerapkan fakta, aturan,	1	
matematika dalam	algoritma, atau rumus matematika dalam perhitungan		
perhitungan	Siswa menerapkan fakta, aturan, algoritma, atau rumus	2	
	matematika dalam perhitungan tetapi hanya sebagian		

Indikator Kemampuan Literasi Matematika	Pedoman Penilaian Jawaban Siswa	Skor	
	Siswa menerapkan fakta, aturan, algoritma, atau rumus	3	
	matematika dalam perhitungan tepat dan benar		
Menginterpretasikan	Siswa tidak dapat menginterpretasikan hasil matematis	0	
hasil matematis ke	ke dalam konteks dunia nyata		
dalam konteks dunia	Siswa kurang tepat menginterpretasikan hasil	1	
nyata	matematis ke dalam konteks dunia nyata		
	Siswa tepat menginterpretasikan hasil matematis ke	2	
	dalam konteks dunia nyata		
	Total skor	11	

Sumber: (Salsabilla & Hidayati, 2021)

Penskoran dilakukan pada sebelum dan sesudah pemberian *treatment*. Skor maksimal yang didapat siswa jika menjawab dengan tepat adalah 11. Skor dijumlahkan berdasarkan pedoman penskoran tes kemampuan literasi matematika dan diakumulasikan sehingga mendapatkan nilai akhir. Nilai akhir siswa didapatkan dengan mengubah skor yang diperoleh siswa ke dalam penilaian skala seratus menurut Kunandar (dalam Indahwati & Abdullah, 2019), sebagai berikut.

Nilai siswa =
$$\frac{skor\ yang\ didapat\ siswa}{skor\ maksimal} \times 100$$

Nilai tersebut kemudian dikelompokkan menjadi tiga kategori menurut Arikunto (Lestari & Effendi, 2022) sebagai berikut.

Tabel 3.11. Kategorisasi Kemampuan Literasi Matematika

Kategori	Batas Nilai
Tinggi	$X \ge (\bar{X} + SD)$
Sedang	$(\bar{X} - SD) < X < (\bar{X} + SD)$
Rendah	$X \le (\bar{X} - SD)$

Sumber: (Lestari & Effendi, 2022)

3.8. Waktu dan Tempat Penelitian

3.8.1. Waktu Penelitian

Penelitian dimulai dari bulan September 2023 hingga Juli 2024. Berikut rincian waktu penelitian yang diperlihatkan dalam tabel.

Tabel 3.12. Waktu Penelitian

No	Kegiatan	2023				2024						
		Sep	Okt	Nov	Des	Jan	Feb	Mar	Apr	Mei	Jun	Jul
1	Pemilihan Dosen											
	Pembimbing											
2	Pengajuan judul											
	penelitian											
3	Penyusunan proposal											
4	Pengajuan surat izin											
	penelitian dan observasi											
5	Seminar proposal											
6	Revisi seminar proposal											
7	Validitas instrumen											
8	Penelitian											
9	Pengumpulan data											
10	Pengolahan data											
11	Penyusunan skripsi											
13	Seminar hasil penelitian											
14	Revisi seminar hasil											
15	Sidang skripsi											

3.8.2. Tempat Penelitian

Tempat penelitian dilakukan di SMP Negeri 1 Kota Tasikmalaya yang beralamat di Jalan Oto Iskandardinata 21, Kelurahan Empangsari, Kecamatan Tawang, Kota Tasikmalaya, Provinsi Jawa Barat, Kode Pos 46113. SMP Negeri 1 Kota Tasikmalaya terdiri dari 11 kelas untuk kelas VII, 11 kelas untuk kelas VIII, dan 11 kelas untuk kelas IX. Jumlah pendidik mata pelajaran matematika di SMP Negeri 1 Kota Tasikmalaya adalah 6 orang tenaga pendidik dengan Kepala SMP Negeri 1 Kota Tasikmalaya yang menjabat pada tahun ajaran 2023/2024 adalah Ibu Dra. Hj. Nina Nartalina, M.Pd.