BAB III

METODOLOGI PENELITIAN

3.1 Lokasi dan Objek Penelitian

3.1.1 Lokasi Penelitian

Lokasi penelitian dilakukan di Proyek Pembangunan Tol Jogja – Bawen STA 37+950 – STA 38+100

Gambar 3.1 Lokasi Penelitian

3.1.2 Objek Penelitian

Penelitian ini berfokus pada analisis parameter tanah eksisting berdasarkan data Borlog dan data lab, pemodelan dan analisis timbunan tanpa perkuatan tanah, dan pemodelan dan analisis timbunan dengan perkuatan cerucuk *minipile*.

3.2 Studi Literatur

Studi literatur dilakukan untuk mencari dan mengumpulkan sumber – sumber berdasarkan buku, jurnal, atau penelitian terdahulu mengenai perkuatan tanah, stabilitas lereng, perilaku *minipile* sebagai perkuatan tanah, metode analisis *finite element method* (FEM), dan penggunaan *software* Program FEM 2D.

3.3 Identifikasi Masalah

Identifikasi masalah pada Proyek Jalan Tol Jogja – Bawen STA 37+950 – STA 38+100 pada kondisi tanah eksisiting berdasarkan data sekunder berupa data borlog dan data laboratorium.

3.4 Pengumpulan Data

Pengumpulan data sekunder meliputi data tanah berupa data Borlog, data laboratorium, gambar potongan melintang tanah eksisting dan rencana timbunan pada proyek Jalan Tol Jogja – Bawen STA 37+950 – STA 38+100.

3.4.1 Data Tanah

Data tanah hasil uji lapangan yang tersedia berupa data NSPT dan data Borlog yang didapatkan dari PT. GEOCIPTA BANGUN OPTIMA. Data NSPT dan borlog yang tersedia adalah pada titik *borehole* BH1 ABT2 STA 38+016, BH2 ABT1 STA 38+041, dan BH2 STA 38+075. Selain data uji lapangan, terdapat data laboratorium pada STA 38+075 dari kedalaman 3,5 – 10m. Ketiga titik *borehole* merupakan tanah lempung, kecuali pada titik BH2 ABT1 STA 38+041 dimana terdapat lapisan tanah pasir setebal 2m pada kedalaman 22 – 24m.

Gambar 3.2 Data NSPT BH1 ABT2 STA 38+016

Gambar 3.3 Data NSPT BH2 ABT1 STA 38+041

Gambar 3.4 Data NSPT BH2 STA 38+075

San	nple	UDS	UDS
Depth	m	3,5-4	9,5 – 10
γ	t/m ³	1,34	1,46
ω	%	89,31	73,49
Gs	-	2,63	2,64
γd	t/m ³	0,71	0,84
e	-	2,72	2,13
n	-	0,73	0,68
Sr	%	86,17	90,97
PL	%	40,12	33,48
LL	%	99,52	74,10
PI	%	59,40	40,62
Gravel	%	0,00	0,00
(G)			
Sand (S)	%	15,04	24,66
Silt (M)	%	32,46	36,75
Clay (C)	%	52,50	38,59
¢	0	11,70	8,14
с	kg/cm ²	0,22	0,19
Cc	-	0,35	0,25
Cv	cm2/scd	6,49E-03	6,63E-03

Tabel 3.1 Data Lab *Borehole* 2 STA 38+075

3.4.2 Data Teknis Minipile

Spesifikasi *minipile* yang akan digunakan pada analisis perkuatan tanah ini menggunakan *minipile* JHS *system* dari PT. SAETI CONCRETINDO WAHANA, spesifikasi dari *minipile* dapat dilihat dari tabel di bawah ini

Bentuk penampang	Dimensi (mm)	Daya Dukung (Ton)
Persegi	• 200x200	• 30 – 35
	• 250x250	• 40 – 50
Segitiga	• 280	• 25 - 30
	• 320	• 35 - 40

Tabel 3.2 Dimensi Minipile

Tabel 3.3 Spesifikasi Minipile

Ukuran		25x25	cm
b (mm)		250,00	mm
h (mm)		250,00	mm
Luas (A)		62.500,00	mm ²
Zb		2.604.167,00	mm ³
No of Strand		4,00	
Type of Strand		Bar D16	
Ultimate Normal	Comperssion	1.278,00	kN
Capacity	Tension	293,00	kN
Shear Capacity		53,68	kN
Torsion Capacity		5,03	kNm
Crack Moment		22,47	kNm
Bending	$\mathbf{P}=0$	29,00	kNm
Capacity	Max	53,00	kNm
Ultimate			

3.4.3 Data Potongan Melintang

Data gambar potongan melintang digunakan gambar potongan dengan tinggi timbunan tertinggi, yaitu pada STA 38+025 dengan ketinggian timbunan 9,538m, adapun gambar potongan melintang sebagai berikut.

Gambar 3.5 Potongan Melintang STA 38+025

3.4.4 Beban Struktur

Beban struktur ketebalan masing – masing lapisan perkerasan disesuaikan dengan gambar potongan melintang jalan, Berat isi masing – masing lapisan disesuaikan dengan SNI 1725 2016. Didapatkan berat struktur sebesar 14,68 kPa Di bawah ini merupakan tabel beban perkerasan.

Tabel 3.4 Beban Struktur

No	Lapisan	Tebal	Berat isi	Р
		(m)	(kN/m3)	(kN/m2)
1	Surface	0,290	22,000	6,380
2	Drainase	0,100	20,750	2,075
3	Cement Treated Based	0,150	20,750	3,113
4	Agregat Kelas B	0,150	20,750	3,113
Tota	1			14,680

3.4.5 Data Beban Lalu Lintas

Berdasarkan Pedoman Desain Geometrik Jalan (2021), Jalan tol termasuk pada Jalan kelas I dimana didapatkan beban lalu lintas sebesar 15 kPa.

Kelas Jalan	Beban Lalu Lintas	Beban di Luar Jalan ^(*)
	(kPa)	(kPa)
Ι	15	10
II	12	10
III	12	10

Tabel 3.5 Beban Lalu Lintas

3.5 Pengolahan Data dan Analisis

Pengolahan data yang telah didapat menggunakan *software* Microsoft Excel serta pemodelan dan analisis menggunakan *software* Program FEM 2D V2O. Analisis perkuatan dengan variasi pemodelan, antara lain analisis timbunan pada tanah eksisting tanpa perkuatan dan analisis timbunan pada tanah yang sudah diberi perkuatan cerucuk.

3.5.1 Pengolahan Data dengan Microsoft Excel

Penggunaan Microsoft Excel ditujukan untuk analisis data berupa data borlog dan data laboratorium untuk mendapatkan gambaran stratifikasi tanah dan parameter tanah, serta analisis daya dukung minipile yang selanjutnya akan diinput dan dimodelkan pada Program FEM 2D.

3.5.2 Pemodelan dan Analisis Menggunakan Program FEM 2D

Pemodelan dan analisis pada Program FEM 2D memiliki variasi pemodelan, diantaranya pemodelan timbunan tanpa perkuatan cerucuk *minipile* dan pemodelan timbunan dengan perkuatan cerucuk *minipile*. Masing – masing variasi pemodelan diberikan beban lalu lintas. Di bawah ini merupakan langkah – langkah analisis menggunakan *software* Program FEM 2D.

1. Open/New Project Program FEM 2D

Buka *software* Program FEM 2D, lalu akan muncul pilihan *start a new project* atau *open an eksisting project*. Kemudian pilih *start a new project* untuk memulai pekerjaan baru. Pada pengaturan *general properties* pilih tab *project* untuk memberi nama proyek pada tab *title*, setelah itu pilih tab model untuk menentukan settingan awal, pilih model *plane strain* dan pada opsi *elements* pilih 15 nodes, semakin banyak jumlah *nodes* yang dipilih semakin akuat hasilnya. Tentukan satuan yang akan dipakai. Pada bagian *contour* boleh tidak diisi jika pemodelan menggunakan opsi *import* structures, jika pemodelan dilakukan secara manual di Program FEM 2D tetapkan batasan dimensi sesuai dengan stratifikasi tanah dan timbunan.

Gambar 3.6 Dialog Start a New Project

🔤 Project prop	perties				—		×
Project Mode	Constants						
Туре			Contour				
Model	Plane strain	~	× _{min}	-100,0	m		
Elements	15-Noded	~	x _{max}	100,0	m		
Units			y _{min}	-50,00	m		
Length	m	~	y _{max}	25,00	m		
Force	kN	~			У 🛔		_
Time	day	~					
Mass	t	\sim					
Temperature	К	~					×
Energy	kJ	~					
Power	kW	\sim					
Stress	kN/m²						
Weight	kN/m³						
Set as default	:		Ne	xt	ОК	Car	ncel

Gambar 3.7 Tab General Properties

2. Pemodelan Soil Structures dengan Import file .DXF

Pemodelan lapisan tanah dapat menggunakan tab soil pada Program FEM 2D atau dengan mengimpor *soil structures* dari gambar lapisan tanah yang sudah dimodelkan di *software* Autocad, gambar potongan yang sudah dibuat diimport ke Program FEM 2D dengan format .DXF

a. Pilih opsi *import geometry* pada tab *structures*

Gambar 3.8 Import Geometry File .DXF

b. Centang polygons dari file .DXF yang dipilih

20 Import geometry		-		×
Object types Points (0) Lines/Polycurves (0) Polygons (16) Scaling Keep original aspect ratio Scale x 1,000 Scale y 1,000 Offset to global coordinates x 0,000 y 0,000	Preview Y			
Bounding box x _{min} <u>-99,80</u> x _{max} 100,2 y _{min} -27,13 y _{max} <u>9,206</u>		ок	Cancel	

Gambar 3.9 Tampilan Poligon dari File .DXF

3. Penentuan Material Properties dan pemodelan

Parameter – parameter tanah dan daya dukung *minipile* yang sudah dianalisis sebelumnya dapat diinput dalam *software* Program FEM 2D.

a. Pada tab structures pilih show materials, lalu akan muncul jendela material sets

		-108.00	Material sets			Material sets			Material sets		
	38.00		Project materials	>> Sh	now global	indental Sets	>> Show g	global	Material Sets		>> Show global
R .						Project materials			Project materials		
	-		Set type	Soil and interface	<u>is</u> ~	Set type	Embedded beam row	~	Set type	Plates	~
	18.00		Group order	None	~	Group order	None	~	Group order	None	~
•	-		Clay-hard			Minipile 25x25			Pilecap		
×.			Clay-medium						- necop		
=	0.00 -		Clay-soft								
<u> </u>			Clay-Stiff								
	-		Clay-Very Stiff								
444 C	_		Timbunan								
Ψųμ	-18.00										
	-										
Γ.											
T +	-										
24	-38.00										
	_										
			New	Edit	SoilTest	<u>N</u> ew	Edit		New	Edit	
	-54.00		Copy	Delete		Сору	Delete		Сору	Delete	
4										-	
	Show ma	terials			ОК		C	ж			ОК

Gambar 3.10 Jendela Material Sets

b. Tambahkan material baru, pada tab general pilih material model Mohr –
 Coloumb, dan *drained type Undrained* untuk tanah lempung dan *drained* untuk tanah pasir.

aterial sets		Soil - Mohr-Coul	omb - Clay-Hard				
	>> Show global	1 🔊 🙆 🚣 1					
Project materials		General Paramet	ers Groundwater The	ermal Interfaces Initial			
Set type	Soil and interfaces $\qquad \lor$	Property	Unit	Value			
Group order	None ~	Material set					
		Identification	n	Clay-Hard			
Clav-Hard		Material mod	iel .	Mohr-Coulomb			
Clay-Medium		Drainage typ	e .	Undrained (B)			
Clay-soft		Colour		RGB 226, 187, 182			
Clay-Stiff		Comments					
Clay-Very Stiff							
		General prop	erties				
		Yunsat	kN/m ³	17,00			
		Ysat	kN/m³	17,00			
		Void ratio					
		Dilatancy	cut-off				
<u>N</u> ew	Edit	e _{int}		0,5000			
Сору	Delete	e _{min}		0,000			
				000.0			
	ОК				Next	OK	Cancel

Gambar 3.11 General Setting Material

c. Pada tab parameters masukkan nilai parameter tanah berdasarkan data

oil - Hardening soil - Tin	nbunan	
ì 🐑 🟯 📋		
eneral Parameters Grou	undwater Thermal	Interfaces Initial
roperty	Unit	Value
Stiffness		
E so ref	kN/m²	250,0E3
E _{oed} ref	kN/m²	250,0E3
E _{ur} ref	kN/m²	750,0E3
power (m)		0,5000
Alternatives		
Use alternatives		
C _c		1,380E-3
C _s		0,4140E-3
e init		0,5000
Strength		
c' _{ref}	kN/m²	1,000
φ' (phi)	۰	30,00
ψ (psi)	۰	0,000
Advanced		
Set to default values		V
Stiffness		
v'ur		0,2000
Pref	kN/m²	100,0
κ _o ^{nc}		0,5000
Strength		
c' inc	kN/m²/m	0,000
y _{ref}	m	0,000
R _f		0,9000

tanah yang sudah diolah.

becade beam fow - Minipite	20X20	
perty	Unit	Value
laterial set		
Identification		Minipile 25x25
Comments		
Colour		RGB 199, 82, 143
Material type		Elastoplastic
Properties		
E	kN/m²	8,310E6
Y	kN/m³	24,00
Beam type		Predefined
Predefined beam type		Massive square beam
Width	m	0,2500
A	m²	0,06250
I	m4	0,3255E-3
L _{spacing}	m	1,500
Mp	kN m	18,32
N	kN	560,0
Rayleigh a		0,000
Rayleigh β		0,000
Axial skin resistance		
Axial skin resistance		Multi-linear
Multi-linear axial resistance		Axial skin resistance table
ateral resistance		
Lateral resistance		Unlimited
Base resistance		

Gambar 3.13 Input Parameter Material Tiang

PI	ate - Pilecap		
	<u>.</u>		
м	echanical Thermal		
P	roperty	Unit	Value
	Material set		
	Identification		Pilecap
	Comments		
	Colour		RGB 0, 0, 255
	Material type		Elastic
	Properties		
	Isotropic		v
	EA1	kN/m	20
	EA2	kN/m	20
	EI	kN m²/m	30
	d	m	4,2
	w	kN/m/m	0,0
	v (nu)		0,0
	Rayleigh o		0,0
	Rayleigh β		0,0
	Prevent punching		

Gambar 3.14 Input Parameter Material Pilecap

d. Pada tab *structures* klik kanan lapisan tanah yang akan ditentukan materialnya lalu pilih jenis tanah yang sesuai.

Gambar 3.15 Set Material pada Model Geometri

4. Pemodelan Struktur Cerucuk dan Pilecap

Cerucuk *minipile* dimodelkan sebagai *Embedded beam row* dan *pilecap* dimodelkan sebagai *plates*.

Gambar 3.16 Pemodelan Cerucuk minipile

Gambar 3.17 Pemodelan Pilecap

5. Input pembebanan

Beban lalu lintas dan perkerasan jalan dimodelkan pada timbunan paling atas, beban lalu lintas dan perkerasan jalan dapat dimodelkan sebagai beban merata.

a. Pada tab *structures* pilih *create line load* lalu tarik garis dari masing – masing ujung timbunan tertinggi.

Gambar 3.18 Input Line Load sebagai Beban Lalu Lintas

b. Tentukan nilai beban lalu lintas dan perkerasan jalan pada jendela selection

explorer

Gambar 3. 19 Input Nilai Beban Lalu Lintas dan Perkerasan Jalan

- 6. Generate Mesh pada Tab Mesh
 - a. Pada tab *mesh* pilih *generate mesh*, pilih *element distribution* medium, lalu pilih ok.

Soil Structures Mesh Flow con	ditions	s Staged construction	
ses explorer		-108.00 -90.00 -72.00 -54.00 -36.00 36.00	
Timbunan 7 [Phase_8] Imbunan 8 [Phase_9] Imbunan 9 [Phase_10] Imbunan 9 [Phase_11] Imbunan 10 [Phase_11] Imbunan 11 [Phase_12] Imbunan 11 [Phase_12]		18.00 - 	X
Pembebanan [Phase_13]		Enhanced mesh refinements Enhanced mesh refinements Element distribution Generate mesh Expect settings	
	4	Relative element size -18.00 Element dimensions 12.196 m	
lel explorer Attributes library		-38.00	icel

Gambar 3.20 Generate Mesh Model

b. Untuk menampilkan mesh yang sudah dibuat dapat dipilih view mesh, mesh
 berupa elemen – elemen nodes dan lines yang saling terhubung
 menghasilkan bagian segitiga – segitiga yang lebih kecil.

Gambar 3.21 Hasil Meshing

7. Penentuan muka air tanah (MAT)

pada tab *flow conditions*, pilih create water level, lalu tarik garis dari titik elevasi air tanah yang ada pada data tanah.

Gambar 3.22 Penentuan Muka Air Tanah (MAT)

8. Staged Construction

Pada tab *staged constructions* merincikan tahap – tahap konstruksi dari tanah eksisting hingga pembebanan.

a. Menambahkan fase konstruksi dengan memilih *add phase* pada opsi paling kiri dengan ikon (+), lalu klik kanan pada *phase* yang sudah ditambahkan untuk menentukan *calculation type* yang akan dipilih. Untuk fase *initial phase* digunakan K0 *procedure*, fase timbunan, aplikasi cerucuk, dan *pilecap* digunakan opsi kalkulasi *Plastic* dan *Loading Type Staged Construction*, fase konsolidasi menggunakan *calculation type*

Gambar 3.23 Phases Explorer

Name		Value
🗆 G	eneral	
	ID	Timbunan 1
	Start from phase	pilecap 🔹
	Calculation type	Plastic 🔻
	Loading type	Staged construction •
	ΣM _{stage}	1.000
	ΣM weight	1.000
	Pore pressure calculation t	Phreatic 🔹
	Thermal calculation type	🗄 Ignore temperature 💌
	Time interval	10.00 day
	Estimated end time	40.00 day
	First step	7
	Last step	11
	Design approach	(None) 🔹
	Special option	0

Gambar 3.24 Menu Calculation Type

b. Aktivasi layer lapisan tanah eksisting dan timbunan dilakukan setelah penambahan fase baru dengan cara klik kanan pada model, lalu pilih *activate*.

Soll Structures Mesh Structures	litions	Staged construction
Phases explorer	R	-108.00 -40.00 -72.00 -54.00 -36.00 -18.00 0.00 18.00 96.00 54.00 -36.00 -14.00 -10.00
Initial phase [Initial Phase] Imitial Phase]		
Selection replaner (InitialPhase) Coarnerses factors 1,000 Coarnerses factors 1,000 Performed Cayooft Acayo terragh reduction: [2] Performed Cayooft Tempa Coarditions, 12,1 Tempa Carditions, None Model explaner (InitialPhase)		0.00
Attributes library		-se do" III Regenerate III review phase Fin Calculator Vex calculator results

Gambar 3.25 Aktivasi Layer pada setiap Construction Phases

Gambar 3.26 Aktivasi Cerucuk dengan *Pilecap* dengan mencentang opsi *Plates* dan *Embedded Beam Rows*

9. Calculation

Setelah fase konstruksi dirincikan dan masing – masing tanah eksisting dan timbunan diaktivasi, selanjutnya pada tab *staged constructions* pilih *calculate*. Kemudian akan muncul jendela *active tasks* yang menunjukan bahwa proses kalkulasi sedang berlangsung. Setelah itu akan muncul hasil kalkulasi, jika terdapat keterangan bahwa struktur *collapse* maka terjadi *failure* pada timbunan.

Active tasks						
Calculating pha	ses					×
Timbunan 10 [Phase_11]						
Kernel information Start time 20:08 Memory used ~248	: 18 MB		8	CPUs: 6/6	64-bit	
Total multipliers at the er	nd of previo	us loading step		Calculation prog	ress	
ΣM dispX ΣM dispY ΣM weight ΣM accel ΣM sf ΣM stage	1,000 1,000 1,000 0,000 1,000 0,5739	P excess, max ΣM _{area} F _x F _y Stiffness Time Dyn, time	5,098 0,9911 0,000 0,000 0,5105 42,87 0,000	P _{max} 6,00 5,00 5,00		10
				time	Node 11677 N	-
Plastic points in current s	15220	Inaccurate	1990	Tolerated	1526	
Plastic interface points	0	Inaccurate	0	Tolerated	3	
Tension points	139	Cap/Hard points	1824	Tension and apex	0	
		D Previe	w	Pause	X Stop	
Minimize					1 task running	

Gambar 3.27 Calculation Phases

10. Output Analisis

Hasil dari analisis seperti deformasi dapat dilihat dengan memilih *view calculation results*. Output yang dicari berupa deformasi, tegangan, penurunan, dan *safety factor* (SF). Gambar di bawah ini merupakan contoh *output* analisis berupa *total displacement*.

Gambar 3.28 Calculation Results

3.6 Kesimpulan dan Saran dari Hasil Analisis.

Pada tahap ini penulisan laporan berisi hasil analisis yang telah didapatkan. Selanjutnya pembuatan solusi dari masalah yang ada, serta pengambilan kesimpulan dari hasil pembahasan.

3.7 Diagram Alir Penelitian

Gambar 3.29 Diagram Alir Penelitian

3.7.1 Diagram Alir Analisis Menggunakan Program FEM 2D

Gambar 3.30 Diagram Alir Analisis Menggunakan Program FEM 2D