Paper 4

by Paper Aradea

Submission date: 08-Oct-2020 03:46PM (UTC+0700)
Submission ID: 1408912022

File name: A4._Paper_loTBookChapter.pdf (2.28M)
Word count: 10167

Character count: 54226

13

Self-Adaptive Cyber-City System

Iping Supriana, Kridanto Surendro, Aradea Dipaloka, and Edvin Ramadhan

CONTENTS

13.1 Introduction: Cyber-City Systems and Seven Pillars of Life.......cciiineinnenn. 295
13.2 The Basis of System Development...........cooviiiiiiiiii s 290
13.21 Representation of System. ..o 297
13.2.2 Construction of Model ..o e, 298
13.3 Self-Adaptive Model......ocoiiiiiiise i e DU
13.3.1 Rule Representation.........cooi e e cecesececesrc e s e e S01
13.3.2 Structure of Knowledge Base.........coovvieceivcinnciiiscisissiee . 304
13.3.3 Reconfiguration SErategy ... sssssssissns oo OU0
13.34 Component-Based Software..........o e ssssnens 310
134 Case Study of Cyber-City System. ... e ee e D11
13.41 Modeling of SyStem...civniscs i s S 1]
13.4.2 System Configuration. ... e e D1
13.5 Discussion and ConClUuSION ... e et as s sras e srs s st e sts e srnsssnassnnanssaes s snes 3 1D

13.1 Introduction: Cyber-City Systems and Seven Pillars of Life

The growth of urban population in the world nowadays encourages the growth of the
level of needs which is increasingly out of control. This is based on the fact that the level
of knowledge in the population continues to increase, so (ITU-T, 2014) it led to the social,
economic, and environmental issues becoming connected to each other. This fact shows
that the characteristics of the system to control a city has the diversity of interrelated
elements and will lead to a variety of challenges and problems in the provision of public
services (PSn).

Therefore, the city management needs to have an intelligent solution and creates
a sustainable environment to (ITU-T, 2014) manage various infrastructure resources,
environmental resource, monitoring the activities in the city, and more needs. All of this
management will relate to the system requirements of the city-management system,
such as franspurtatitm management, energy management, water management, waste
management, municipal administration management, health services management,
and other PSn management.

295

296 The Internet of Things

Internet of Things (loT) is a concept that can answer the challenges. Nowadays, there
are several definitions of it, but basically, they have the same goal to extend the benefits
of Internet connectivity that can connect a variety of real-world objects as physical and
virtual representation continuously. One of the implementation of lIoT for the needs of
city-management system is how to utilizing the functions of information and communica-
tion technology is developed on a concept called the cyber city or smart city or intelligent
city or some other term, that basically aimed to meet the requirement of city manage-
ment development through the systematic formulation. The proposed system is packed
with various facilities, such as the efficiency and effectiveness of implementation, speed
of access, accuracy of services, and others. But this various advantages will not be able to
make a significant contribution if only temporary. This is related to the detail and com-
pleteness of the concept to meet the characteristic of the growth in a city.

In this discussion, we will describe a model about how to establish a system that can
accommodate a variety of changes in the application environment, how to manage the
change, and how to make the system has the capability to adaptand fit the changes. So that
this model can be an inspiration in developing a scenario of systems that needed to man-
age a city. The model that has been designed inspired by the seven pillars of life (taklif)
(Nabulsi, 2010), which is composed of the universe, law, reason, nature, lust, freedom of
choice, and time. These seven pillars are represented through an agent-oriented approach
BDI (belief, desire, intention). So the points of the inspiration are, we need to consider
which part is associated with the domain model and which part is associated with control
model in building the management software system, in this case, the city-management
system. It is expected to create a computational model that can be used as guidance in
developing a system of cyber-city systems and other loT software systems in general, with
the self-adaptive ability which can handle the issue of change and growth of systems.

13.2 The Basis of System Development

Self-adaptive systems (SAS) is presented as an alternative solution to the problems
associated with the complexity of the loT system, including the demands of autonomy,
automation, adaptability, flexibility, scalability, reliability, speed, and others (Supriana and
Aradea, 2015). SAS is a system that can automatically take appropriate action based on
the knowledge that the system has about what is happening in the system itself, guided
by the goal, and assisted by the users who are given the access (Ganek and Corbi, 2015).
SAS can modify the system behavior in response to the changes in the system itself or the
changes in its environment (Cheng et al, 2014). This definition shows that the system has
the knowledge, which can be used to achieve its objectives through several means, and is
able to make the adaptation in behavior based on events in the environment.

The characteristics of each element in the environment of an loI-management system
require a mapping and alignment with the system that will be the ultimate driving
machine in the achievement of a city manager. So (Aradea et al., 2014), all of the activity that
occurs in the environment of this loT system requires a mechanism that can represent the
behavior of the system in real-world change. SAS concept was developed as a solution to
this problem. The constructed cyber-city system must have the capability to reflect the
requirements of each element of a city, to the adaptability of changes in the system and its
environment.

Self-Adaptive Cyber-City System 297

13.2.1 Representation of System

Basically, the universe was created for man to be given the mandate as the leader on earth,
who is able to organize and manage all the resources of the earth. This practice is called
the taklif (Nabulsi, 2010). The process of taklif comprises seven pillars (Nabulsi, 2010),
namely (ITU-T, 2014) (1) universe, (2) reasonable, (3) nature, () religion or laws, (5) lust,
(6) the freedom to choose, and (7) time. The explanation of all seven pillars of this taklif as
can be seen in Table 13.1.

TABLE 13.1
Seven Pillars of the Taklif System

Pillars Explanation

The Universe All content of the earth, including the behavior of the com ponents of the universe, can be
grouped into two kinds of roles in the taklif system, that is, as the knowledge and as
utilization. Human reasoning works on the principles of harmony with the universe and
the principles of law. There are three principles of human reasoning, namely the principle
of cause and effect (something happens fora reason), the principle of goal (something exists
must be the goal), and the principle of anticontradictory (two things can apply when they
are opposites).

Reasonable The human mind will process two facts, namely the fact sensuous (reality) and logical
facts (explanation). The logical fact has a higher position than the sensuous fact. Humans
have the potential to think broadly but limited by the information provided by the
senses. There is a lot of information about the past and the future that cannot be reached
by the senses. If we relate this thinking to the concept of religion, we can state that
religion is the only thing that can be delimiters in the laws or reason.

Nature Naturally, humans were created with moral instincts. This moral instinct that defines the
rules of human life. But there are some human attitudes which are contrary to this rule, this
attitude appears because of character flaws and physical to the human. This weakness
makes the natural rule to be violated, distorted, and even erased. This weakness is a
challenge for humans, this rule can be restored to its natural state through learning or
management that is able to organize and disenchant the people to respect the rule of nature.

Religion or Laws Religion is a concept of how people should behave toward the creator, fellow human
beings, and its natural surroundings. The truth of human thought and the natural order
must be calibrated with the rules of religion; truth in religion is generally considered an
absolute, whereas reason and nature can be distorted by lust. To determine the truth as
the basis of the rule, the truth must meet four requirements, which is carried by religion
or laws, approved by human reasoning, in accordance with nature, and confirmed by
objective reality.

Lust Lust is the desire to achieve the goal, with their desire for a need for pleasure and love of
something inherent in man, the lust will make him it will strive to achieve it. But lust is
neutral. Lust is controlled by the choice of reason and nature, whether just as satisfying a
need or as a means of achievement of objectives as stated in the rules of religion or laws.

Freedom of Choice Freedom of choice is central to the taklif system. In this case, the religious rules known as
the belief which acts as the basis of the freedom to choose. In this world, there are many
choices and each choice has its own consequences. Religious rules and nature that will
be a reference for these choices.

Time Allinteractions of the six pillars of the taklif system which have been described previously
run in the dimension of space and time. Its space is the earth and the universe, whereas
the time is a series of events recorded since humans are born until his death.

Source: Nabulsi, R. M. 7 Pilar kehidupan: Alam semesta, akal, fitvah, syaviat, syahwat, kebebasan memilil, don waktu,
Gema Insani, Jakarta, 2010; Agustin, R. D., Supriana, 1., Model Komputasi Pada Manusia dengan
Pendekatan Agent, Kolaborasi BDI Model dan Tujuh Pilar Kehidupan sebagai Inspirasi untuk
Mengembangkan Enacted Serious Game, Korlﬁ‘rt'ns{ Nastonal Ststem Ir{fonrmsi (KNSI), ITB, 2012.

298 The Internet of Things

13.2.2 Construction of Model

Based on the model of the representation of system in Section 13.2.1, the construction model
of developed software in the loT concept, referring to the seven pillars of the taklif system,
is mapped to the BDI Model (Bratman, 1987; Mora, 1999; Russel, 2003). A more detailed
description can be found in the paper (Agustin and Supriana, 2012). The BDI Model is a
theory of reasoning from a practical standpoint (practical reasoning) and were adopted in
an agent-oriented architecture.

There are two main processes in practical reasoning, namely deliberate and means-end
reasoning, Deliberate is the process of deciding specific circumstances to be achieved, called
the intention. The means-end reasoning is the process to draw up a plan to achieve that
intention. The deliberate process begins with understanding the stimulus from the environ-
ment using the belief, that the perception of the agent (which is assumed to be true) on the
environment. The outcome of this process is the captured problem classification by the agent
at the detected time. Based on these results, the system will search for the best reaction to solve
the given problem. In the desires of the BDI model, these solutions are emerging as an alter-
native option which generated sporadically, so the various alternative solutions appear; but
because it is generated sporadically, there may be a solution that is unrealistic or inconsistent.

Before adding a goal to the state of intention, all alternative choices in the state for this
goal needs to be verified and validated, to be realistic with the condition of the agent,
and consistent with the objectives set (Mora, 1999). Furthermore, in the state of inten-
tion, the system has obtained some options, to be realized as an action. In the end, the
mental state will generate an action into some subactions to be executed by the effector.
The mapping of these BDI models of the seven pillars of the taklif system is shown in
Figure 13.1.

1. Pillars of components in the universe are the facts of each entity and its environ-
ment. The behavior of the components in the universe in the form of events can
be captured by the information-model context. In this case, there are two kinds of
roles, namely the introduction of knowledge and utilization, which means how to
recognize and utilize the facts.

2. The next component is the representation of the pillars of sense. Pillars of sense
mean to know the nature and to work based on the principles that correspond to
the goal, nature, and religion or law (rules of how to behave /delimiters sense).
This component evaluates the condition by processing the facts of reality and
logical facts based on occurred events. In this evaluation phase, the facts will be
processed, diagnosed, and classified based on the problem, so we can determine
how to choose understanding.

3. The processing of facts would trigger some response that will be taken by the action
component in the process of adaptation. There will be some choices in response
to the prevailing condition in accordance with the rule of lust (functional require-
ments and nonfunctional requirements), and to generate the response options, it
will be processed by the system itself without being given the freedom to choose.

4. Components of sense will choose several response options in accordance with
the model of rules in religion or law (as described). In this process, selection and
filtering are performed between some alternatives of priority response, so that the
results are just a few alternatives with the highest priority.

Self-Adaptive Cyber-City System 299
6. Freedom of choice
Belief Desire
Conscious-
: Pleasure
Sense ness Unconscious-
. . inference
Sequence of experience inference knowledge ness engine
—_—
or special experience engine/ about knowledge [G'ffen]
independent universe (Lust) Pl
. instinet
environment
5. Lust
i . Dependent and be
L. The universe forced to sense
Edyand ratlo.nal Independent and Goal
inference engine full consciousness _ [)
% Learning by Conscious- .R?tmml
. it ness inference
Unconsciousness *, g happiness & ™ knowledge engine/
Reward and knowledge : : about independent
(Nature) inference engine -
punishment — ——— (Reasonable and religion | freasonable
experience nature)
Happiness 3. Religion |2, Reasonable
inference engine I
Plan Intention
Conscious- | gy o ner . Happiness
ness ine/ Conscious- inference
Action affect to knowledge s ness .
. independent - engine/
environment (How to knowledge
. (Reasonable independent
achieve about fitrah
) . and effector) (Nature)
intention)
4. Nature

FIGURE 13.1
The mapping of the seven pillars in the taklif system into the BDI model.

5. Representation of the qolbu components will filter out some of the alternate
options again from remaining responses, in reference to the understanding of
nature’s rule (instinctive understanding of the religion or the law of nature) until
the obtained result is the best response that will be implemented.

. Based on the selected response, some planning for the adjustment process can be
arranged, and the effector of the body part system to execute the selected response
can be determined in a certain order. The result of the execution of the effector is
called as action.

7. The actions taken will get a reward or punishment based on the accuracy of
the selected response with religious rules and nature should be. This stage will
be a learning process for the system and will become a trigger for updating
knowledge so that the system can determine the best response action in the
future.

The characteristics of the seven pillars of the taklif system in conducting adapta-
tion response are shown in Figure 13.1. The pillars are represented by 4 major rules in
3 BDI states, which is desires (R1), goal (R2 and R3), and the intention (R4); the states will

300 The Internet of Things

determine the understanding of belief. The development strategy for each of these rules
are as follows:

1. Rule-1 (generic structures): Represent the real world in the form of abstract classes
to model the goal.

2. Rule 2 (conceptual rule): Identifying the generic structure that meets the basic
specifications of fact; this rule will also guide the system in determining an
alternative initial option based on the understanding of belief to environmental
stimuli.

3. Rule-3 (configuration rule): Define the configuration of the components, verify and
validate an alternative option of conceptual results of operation rule.

4. Rule 4 (specific rule): A special rule that is used if needed or if operating results
do not meet certain criteria to obtain one or more options that are most relevant
actions.

13.3 Self-Adaptive Model

This section will discuss the proposed model to build software systems with self-adaptive
capabilities in the IoT concept. The framework was developed as shown in Figure 13.2,
consisting of two main parts, as follows:

1. The domain model is represented as goal model. The domain model is a compo-
nent that provides the IoT concept’s basic functions and application logic. This
model was developed based on goal-oriented approach, which can exploit the
human-oriented abstractions such as agents and some other concepts, so it can
represent real-world conditions.

2. The control model is represented as inference engine that controls or manages
the target system through the adaptation logic. These models apply some
patterns of action of the agent through the transition rules. The control model
considers context-aware scenarios to represent a control strategy to meet the
requirements of self-adaptation.

The domain model is a requirement of the IoT-goal system. Domain models are mapped
to the BDI models for defining goals, planning, and other elements. The results of the
mapping are represented by agent definition file and the plan specification. The concept
of this agent represents the context of the loT system as a fact in belief base and environ-
ment class for the purposes of monitoring functions (Supriana and Aradea, 2016). This
approach quite provides the variability at run-time, but we extend it through the mapping
into the BDI models, which is based on seven-pillar taklif with rule-based, which are con-
structed in a more general and more flexible, so it can provide a better way of analyzing
the variability and can help in detailing the behavior of the system to meet the goals and
adaptation action.

The control model is the setting of the ffhavior of the loT system, tasked to monitor
the environment and adjust the system if necessary, for example, reconfigure when
there is a change goal, optimize themselves when the operation changes, and able

Self-Adaptive Cyber-City System 301

) N
- Agent ‘;;EA-’.‘. | 1\
Mappingand | definition file | r’ . i}#a i
updated model - Plan] \ '\.'.',’-_
specification Execute Action &4 ¥
A
Goal model Inference engine
Context
NRules
[— Rudes 4

Mapping and | — Editor
upd:,lgd E‘mdel Knowledge
— L -Genericstructure

- Conceptual rule
Environment - Configuration rule
classes - Specific rule

FIGURE 13.2
Framework for self-adaptive systems.

to handle certain types of errors. The pattern applied is an extension of the architec-
ture event-condition-action (ECA) which in one or more event refers to the state of the
current system. The models will change the application or loT-system environment.
Meanwhile, one or more condition refers to the time when a particular event occurs
and the action rule is activated. So one or more action can be activated under certain
conditions through the operation of rules in determining the behavior of the adaptive
system.

13.3.1 Rule Representation

Any changes occurred in the [oT system is seen as a model of automata and the relation-
ship of the possible state. Those changes can occur from an initial state until it reaches the
final state. So the description of automata can be expressed as the model of rules which
describes the relationship between the two states.

The representation of rules of these designed automata models, automatically, can detect
the changes in the states and determine the necessary actions for adaptations. Scenarios
are developed through the formation of the rule to identify similarities in the properties of
each list of knowledge. In general, the rule-based system consists of 11 classes (Wu, 2004)
as follows: rule, lefthand side (LHS), expression, fact, slot, composite expression, unary
expression, binary expression, right-hand side (RHS), action, and function, as shown in
Figure 13.3.

302 The Internet of Things

.,
(nEn, vENn) é—{ nEl |
N

TN
/ \ N
e nE3 {
m /)l"'—",_)l VEN2Z ;
,f' "\ - ., ~ \\ /
F| '\I S
€—{ nE2
a8 \ /
. ___,/'\
see
(nE21) [vENLL)
S R \ %
\L \L : /I N
ves (nEn,vENn) &~y ses
LI
| """"""""""""" o -hasRHS | """""""
Vv Rele .
I ’ -ruleName]
LHS WS | | feecintion . RHS
1
1 -operand-A 1 -consistsOf
Expression
-operand-B
(1]
~operand
% f E CompositeExpression Action
Fact 1
-factName Z;S 1
BinaryExpression
-holds
1.%
gl Function
ot UnaryExpression
-functionName
-slotName i
-slotValue ¥ ki)
1

FIGURE 13.3
Knowledge tree and rule-based systems.

Self-Adaptive Cyber-City System 303

This rule-based system has a production rule in the form if condition > then action >
Action > on the RHS is concrete. This production rule is a practical consequence of a par-
ticular condition, whereas the other rules in the rule base are known as derivation rule.
Conclusion > on the RHS is more abstract and becomes the logical consequence of certain
conditions. However, a production rule can apply derivation rule using certain actions such
as assert that expressed knowledge.

An action > defined on the RHS is determined by the expression on the LHS, which is
conformity between rules and facts. Therefore, to create a self-adaptive ability, the rule-
based system should be expanded as discussed in Section 13.3.2. The main objective is to
equate the LHS in accordance with the formulation of the property slot, so there is a set of
inner properties that become the source of facts, such as variables, constants, tuples, and
so on. The basis of the mechanism is comparing the two or more collections of properties
with a certain structure based on the criteria required.

In Figure 13.3 (bottom), we can see that the LHS is an expression that can be a fact,
a single expression (pattern) which is characterized by a name and a collection of
slots, or may be a composite expression with conditional elements (and, or, not). The
conditional element is also used to connect a single expression (facts) or a composite
expression. Class of fact has a containment reference in the class slot with the attribute
“slotName” and “slotValue.” The changes in this slot attribute will be detected based
on any of the elements contained in the facts. For example, in the structure of the fol-
lowing basic rule:

if =::[fact—]] (fact-2)...(fact-N]; then {:[action—]].,,[action—N] (13.1)

Information models of facts have variations on slotName and slotValue based on the defined
information context. The information models are defined to be a relation between entities in
the system and the environment. Information models are also represented as an intercon-
nected class and the facts in working memory. Thus, a system entity would have a slotName
such as “nameEntity” (nE1l, nE2, nE3 ... nEx) and has a view component for the environment
as slot “viewEnvironment” (VEN) and can be composed of other facts, for example (VENI,
vENZ2, vEN3,... vEN#n,), and each slot is possible to have more specific (vVENLI, vENL2, ...
vENLn), and the specification is also very possible to have other new slot. Representation of
factis a list of knowledge owned by each entity, and we define the list of this knowledge ina
graph form or tree structure of knowledge, as we can see in Figure 13.3.

The tree structure of knowledge will add, delete, update, and customize every vertex
automatically in response to the occurred state changes in accordance with the facts. The
structure of property description of the knowledge tree can be managed by mapping the
patterns of the seven pillars of taklif into the BDI model. So the representation of rules will
be a reference for developed adaptation mechanisms to make a rule expansion of the ECA
model (Daniele, 2006; Pires et al, 2008). This model can handle a wider scope of the solu-
tion space, and flexible, by using the following basic structure:

WHEN <event>; one or more transition state
IF <condition>; conditions that must be met to trigger action
(13.2)
THEN <action>; one or more actions when the event takes place

VALID TIME <time period:; period of adaptation actions

304 The Internet of Things

Operator selector

Knowledge

Tuple :
L:LHS R:RHS a. Context/fact (¥) :f1, 2 ... fu
MRuds:

b. Behavior/action (Q) :a1, a2 ... an
[T c. Transition (3) :t1, t2 ...t
d. The initial state (go) and final state (F)

L R L RL R
o [0 @ [u (s o
1 2 " tn Rule based structure :
Contexts ! Behavior WHEN <even E_>. ;
i et 4 o IF <condition=;
| . THEN saclion= ;

o4 L VALID-TIME ~ <time period> ;

. ‘. . Note :

fn an LHS : Left-Hand Side

f * RHS: Right-Hand Side

Sensor Actuator

FIGURE 13.4

Model of rule representation.

Based on these descriptions, to define the needs of models, we set a tuple of the system,
whichare as follows: (a) Facts context information (2: f1 ... fi) as the set of inputs, (b) Action
of system behavior (Q: al ... an) as a set of finite status, (c) Transition function or opera-
tor (6: tl ... tn) as a function of the change, (d) Preliminary data (q0) as initial status, and
(e) information targets status as the set of final status.

Figure 13.4 describes the relationship between variables and functions of the developed
model. Information context is a set of inputs to be monitored as an event of the facts from
any context information. The condition will be evaluated with reference to a specific event
that occurs within the set of states, and it will trigger the adaptation action through the
transition function of the prevailing condition; so the status of the target can be achieved
by the action of the expected behavior.

Descriptions of the model are as follows:

1. ¥: Context information in the form of a set of facts (f1 ... fn) is captured from the
event environment and can determine the change in status.

2. Q: Behavioral actions (al ... an) form the set of behaviors status of the system,
starting from the initial state (q0) to the status of which can be targeted (F).

3. &: Transition function (t1 ... tn) as time of action adaptation based on the evalua-
tion of the condition, to change the initial status (q0) to the status of the target (F).

13.3.2 Structure of Knowledge Base

With reference to the representation of prepared rules, any change in the [oT system state
can be expressed as series of a node changes (Supriana et al,, 1989); each situation will be
modeled into a node, and changes of state will be described as the arc which connecting

Self-Adaptive Cyber-City System 305

two nodes. So the used structure to handle the dependencies between the elements of
knowledge is a directed graph.

The motivation for this development of the knowledge base structure is the reasoning
that the approach of rule-based systems in most applications only focused on the rules of
behavior of the software that is designed specifically, while the problems that may arise
relate to the variability that can be served. This problem triggers the idea to formulate a
model of the system structure to be more common and flexible, can be applicable to a wide
scope of variability in the system and its environment, and expanded flexibly. The devel-
opment of this modelis targeted to meet the needs of the system to capture the variability
in context and behavior of the system itself and its environment. This model can also set
the criteria of assurance for the system management and its adaptation mechanisms.

In the design of the developed structures, each node in the graph has some slot cat-
egories, and each category has a number of attributes that can be increased, as shown in
Figure 13.5.

The basic mechanism for knowledge management is prepared to meet the scope of a life
cycle system: birth (create), use (use), updated (update), and deleted (delete). Developed-
management module consists of initiation slot, expansion slots, adjustment slot, and
inspection slot. The searching mechanism in a knowledge space is performed by using the
access to the slot module, control of the trajectory, and the search delay. This mechanism
can handle input consisting of context information, change and the output as behavioral
adaptation actions of the sensors and actuator module. Overview model development can
be seen in Figure 13.6.

FIGURE 13.5
Structure of knowledge base.

306 The Internet of Things

Knowledge base structure
Operami selector Category Slot Slot Slot

Knowledge Node e ———— ' ——

=l [= (==
L:LHSR:RHH — ! [R [o = (o
N Ralss,

PR
(qo......F) LT |
LRLRLER
. & & & = @ I
. 2 tn =lf=e== [p==== [} ==
Node
Contexts Behavior 9 === [fp——— [J=-
f1 & y » al b [[ppp—— e
] |
2 ~ - az | |
- . | = = Node x
- . - = — — — Naodey
[; T Nod ——f———— [== | J=-
ade === [fp=e=— [}==
Sensor I Il Actuator n b pmem = [F—-—— [F—-

FIGURE 13.6
Representation and structure of knowledge base.

13.%1 Reconfiguration Strategy

The main objective of this strategy is to defffe the domain model and determine the most
relevant adaptation response options. The notation used to construct this algorithm con-
sists of the following:

1. A model of goal (G) consists of connected nodes by its property attributes (P); each
node also consists of a number of states (Sn), which may have a contribution to a

soft goal. (]

2. Some states (Sn) may consist of the initial state (q0) and the status of the target (F);
this state is influenced by several processing of facts (2.: fn) on the LHS, which will
determine the behavior of the action (Q: an) and on the RHS, through the transi-
tion function (8: tn)

3. The process of recognition performed by observing 3 1 as a trigger for Sn in each
G, until S can be set as a reference of plan preparation to realize a number of Q: an,
including its mapping to the component (C).

To realize the construction of the system and the need for changes, we define four basic
operations (create, read, update, and delete). This operation is mapped to the operation of
the components (Kramer & Magee, 2007) that can be seen in Chart 13.1.

In addition, we define the rule that reprefnts each element in the components of goal
systems. This rule is compiled based on the rules of goal decomposition (Nakagawa et al.,
2008); if the goal decomposition is AND-decomposition, then the parent goal will require
multiple attributes of the relation (port) for each child goal with a one-to-one degree of
relationship. But if the goal decomposition is OR-decomposition, then the parent goal
will provide the conditional attributes of the relation (port) to each goal, with the one-to-
many degree of relation. In this activity, we also need to set the properties for each goal
(functional) and a soft goal (nonfunctional). Chart 13.2 illustrates the algorithm to definea
primitive component based on the goal model.

Self-Adaptive Cyber-City System 307

Chart 13.1 Configuration Algorithm

Components Configuration

G < (goal, soft goal)
C « (components)
for all N in goalModel do
G « C: configuration components for operation
foreach (%, Q) # o do
(create, read, update, delete) — DiagnoseNode (G)
create « create component instance C from type G
read « connect or disconnect C1 to C2
update < set mode of C
delete < delete component instance C
end for
goalModel m « reconfiguration(create, read, update, delete)
enactModel(n)
end for

Chart 13.2 Diagnosis Algorithm

Goal Diagnosis

for all G in m do
G < addProperty(P)
if G decomposition = AND-decomposition then
G parent «— add multiplePort j/ sum of G childrenPort
for all Gin G children do
port « add providedPort
C configuration < DiagnoseNode
else if G.decomposition = OR-decomposition then
G parent « add conditionalPort
for all G in G children do
port < add conditional providedPort
C configuration « DiagnoseNode
end for
end if
end for
end if
end for

The development-control strategy to observe and regulate every component of the system
that has been defined, by using the design pattern (Abuseta and Swesi, 2015) that was
inspired by the model of MAPE-K (IBM, 2005), and modified in accordance with the pre-
vious system requirements. Chart 13.3 shows the algorithm to monitor and analyze the
needs of the adaptation plan.

308 The Internet of Things

Chart13.3 Observation Algorithm

States Observation

for all G in m do
m «— (2 £,) // at run-time
G « getValue(P) // time triggered or event triggered
for each value(S) in P do
S « combining internal and external value(P)
if Sin S.target(F) # P.threshold then
systemState «— new S.system(S.instance) and
systemStateLog < save(S.system) and
send information(S.system) to analyzerManager
@it
for each S.system in analyzerManager do
analyzer «— update(logs) actual S.system
search(S.system) in symptomRepository
if symptom # o then
create(adaptationRequest) and .
update(adaptationRequest) for plan specification
else
addSymptom to symptomRepository and
create(adaptationRequest) and
send information(adaptationRequest) for plan specification
end if
end for
end for
end for

There are a number of properties on the model of goals that must be read and measured
(observation) in concurrency. In the Java programming language, multithreading tech-
niques are relevant to meet this need. This activity represents the state system at run-time
by using time-triggered or event-triggered; this process is performed in response to any
request or event. The state of the system at run-time is represented by a combination of the
internal and external property value; the desired state is directed by a goal and a soft goal.
Violations of the state detected by the threshold level of each goal property and a new run-
time system state are stored in the system state logs for analysis.

Violation of the goals and requirements of the system is analyzed based on the symp-
tom repository. The symptom repository is a collection of symptoms that has been set for
the system to avoid and heal itself. This component is part of the knowledge base. The
symptom repository is equipped with facilities to add new symptoms that occur during
runtime analysis through operating add symptom. The symptom class consisting of an
associative array is used to store any symptoms, which represent each event of symptoms
and its value represents the condition relating to the event. Some programming techniques
for this class and interfaces are (Abuseta and Swesi, 2015) map (Java), dictionary (Python),
and associative arrays (PHP). If the analysis detects the presence of symptoms, then the
plan component will receive a demand signal for adaptation and reconfigure the system
based on the engine policy. Chart 13.4 shows the algorithm reconfiguration plan.

Self-Adaptive Cyber-City System 309

The policy engine provides the high-level goals that control the operation and functions
of related systems. The general form is ECA rules; these rules are used to determine the
action when the event occurred and meet certain conditions. The policy engine is rep-
resented as a knowledge base, which provides an interface for system administrators to
determine and change the system policy. In our version, the engine is being expanded
with the model of rule editor, and also additions or changes in the specification can be per-
formed by editing the knowledge base directly, or reset back into the system.

Chart 13.4 Reconfiguration Algorithm

R'nnﬁgu ration Plan

for each adaptationRequest(S.system) do
init « set work (2, Q)
while & {t, (f,, a,) | n # o} do
0 « find that the LHS of the operator match with work say it found
if found is only one then
RHS + set work
else if work is equivalent with target then
stop succeed
end if
if found is more than one then
found « set work one of the found
backs « put rest of found
end if
if found is empty then
else if backs is empty then
stop failed
else
backs « set work one of backs
end if
end if
for all (t,) is found do
a < construct corrective Action(addAction)
changePlan « new ChangePlan(a,)
send changePlan to one or more executors
foreach a in executor do
actuator < update(a,) /f one or more actuators
S.system < reconfiguration m with actuator
/ set new value for C (DiagnoseNode)
systemStateLog « saveState(S.system)
end for
end for
end for

Each request of adaptation will be represented as a state in the system, which detected
based on the occurred events. A set of & can be expressed as 8 [tn (fn, an) | n # o), with
“fn” is the fact of context (the property of goal) and “an” is the behavior of the action that

310 The Internet of Things

expected to a specific contextual n. The quality of the inference engine depends on the
selection of state for the adaptive action on the RHS class. This quality is also determined
by the expression in the LHS class. The expression is a match between the rule and the
facts. For example, comparing two or more collections of properties with certain structures,
based on the required criteria. The used key strategies are the forward strategy, reusing
(reuse) the existing fundamental component, and matching the required specifications.

The changing plan contfains the set of action for the execution component to perform
the adaptation action. This action should be carried out in some specific order, for exam-
ple, sequentially or concurrently or both. The execution component will use a number of
actuators to set new values of the property in the target system and its environment. The
corrective action of the execution component on a number of the actuator will bring the
system back to the desired state or an acceptable state, and then this state will be saved in
the log of the system state by the actuator.

13.3.4 Component-Based Software

In this section, a description of the reconfiguration strategy that has been discussed in
Section 13.3.3 will be implemented in the component-based software. The component is
a specific function unit which interacts with using the interface through the delivery of a
service. The component-based system is a collection of components which are connected
to each other, so it has the desired functions. In general, the interface between the compo-
nents is a standard form, so the components can be connected and have a good interoper-
ability. Based on the variety of this interface, the components can be divided into several
types, namely (a) the input component, (b) the process components, (c) output component,
and (d) the delivery components.

The input component is a component that only has an interface that generates
information. The process component is defined as a component which has a pair or
more connections between the input interface and an output interface. In general,
information for the output interface in the components of the process have a func-
tional relationship with the information on the input interface. Some of the functions
can be owned by any other process components, including structural, preparation,
grouping, and counting function.

Output component is a component that only has the interface that receives the output
information from the processing component. And the delivery component is a supporting
component that mediates the delivery between the input component and output compo-
nent. By using this delivery component, the system can become more compatible to be
accessed in the variety of platforms; itis mostly needed in a system with the concept of IoT.

Each component can provide independent services, connected or collaborated services,
and free active services. This independent service allows a component to perform its
function itself, actively, without requiring the presence of other components. The com-
ponents with the connected services or collaborated services are the component with
the interaction of two or more components connected. In particular, this process can
take place sequentially or in parallel, and the component of the free active services is a
component that is active and running but has not performed its function until there are
triggers that appear from any other active component.

One of the approaches thatcan be adopted to formulate the architecture of the software
components, for the needs of a cyber-city system in the concept of loT, is to utilize
the architectural description languages, which was developed in the Darwin model
(Magee et al., 1996; Magee et al., 1996; Hirsch et al., 2006). This model is a declarative

Self-Adaptive Cyber-City System 31

component-based architectural description languages that supports a hierarchical model
and graphical modeling, easy to use in determining the software components, including
interconnection and structure by using formal modeling notation. The specification of
this software component architecture will be incorporated into the requirements of the
self-adaptive cyber-city system in Section 13.4, as a motivation of the case to provide a
more concrete.

13.4 Case Study of Cyber-City System

This section discusses the case about the development of the cyber-city system in the loT
concept; the goal of this case is to make the cyber-city system with the ability to capture
requirements of each element of a city and has a good adaptability to changes and have the
capability to handle the growth of the system in its environment.

13.4.1 Modeling of System

The development of the cyber-city system can be initiated through the domain mod-
eling in the loT concept; the system will identify each entity until the processes or
resources can be defined, and the relation between each other can be explained. Each
of these processes is connected to each interface that serves as executor of the system.
This activity can be done with the goal-based modeling approach. Furthermore, each
defined element in the system is mapped into the software components, until the opera-
tional mechanism of the system can be determined, whether the components are set to
dynamically or statically.

The stages are performed to identify and define the loT contextof adaptation mechanisms;
so in every identified context, we can build a knowledge tree, as shown in Figure 13.7. As
an example, according to the context of the user interface identification mechanism, the
structure of knowledge can anticipate the growth of user requirements, both of internal
or external stakeholders. In another example, with the basic mechanism of service-context
identification, the knowledge structure can anticipate the changes and growth of require-
ments on the activity and the process of converting data into system services. In addition,
itis possible to add an identification mechanism of other contexts if necessary, based on the
changes of facts or the growth of the system.

The illustration in Figure 13.7 shows that the structure of actor tree and data tree will be
automatically added, deleted, updated, and adapted to every vertex, in response to chang-
ing circumstances and growth occurs. As an illustration, every actor tree in the cyber-city
system will be linked to the requirements and changes of actors in government, private,
personal, and so on, as a user of the system. Data tree will be associated with the process of
change and growth activity of each actor in the service system, whether it is in the process
of trade, education, transportation, health, tourism, entertainment, and so on. Based on the
formulation of this knowledge-tree structure, we can define the requirements of PSn in the
form of the service catalog as shown in Table 13.2.

The service catalog describes details of the service for each actor. Duration is the service
availability of time, for example, 2 x 24 hours, 8:00 a.m. to 4:00 p.m., and so on. Options are
aclass of selected service based on the level of interest or influence to the goal, for example,
level 1: A response (1-2), level 2: B response (2-3), and level 3: C response (3-4). Moreover, the

312 The Internet of Things
Interface Cyber city
I = Interface
P =Process
I I
Mapping Mapping
Y Y
Actor (A) Tree Data (D) Tree
(An, Dn) é&—— Al (Dl — ase
/v) (Dn) ¢ D2)
oo s (A2 &3 : Ry
/% e (An, D) ¥ £ =
A6 \A9) ‘& @ ~na)

A5 T : | D6 | T

i 9 (s - l

l i (Dn)

l ol D9 ——> (Dn)

(RN} (AI‘I,DI‘I} . TN . -
FIGURE 13.7
The mapping of elements in a cyber-city system into the knowledge tree.
TABLE 13.2
Service Catalog

Description User

Service Catalog Duration Option Response U, U, U,
Service-1.1 24 x7 2 2 y - v
Service-1.2 24 x7 2 1 y - y
Service-1.n 24x7 1 1 .) -
Service-2.1 24x7 1 2 y y y
Service 2.2 08-16 3 4 - y y
Service-2.n 08-16 1 1 v J =
Service-n.m 24x7 3 3 - - y

Self-Adaptive Cyber-City System 313

response is the incident recovery activity of the service class, which is classified based
on the level of seriousness of the incident, for example, level 1: 10 min, level 2: 30 min,
level 3: 1 hour, and level 4: 2 hours, depending on the impacts of incidents.

The changes that can lead to incidents in the service catalog can be categorized as the
facts of (fn) changes, for example:

1. f1: The political policy of the city can be associated with the changes in infrastruc-
ture and the structure of the city departments.

2. f2: The growth of activity, regarding changes to business processes and growth of
PSn.

3. f3: Service providers, changes legalization, are caused by the demand for a new
form, features, and algorithms, in the application of external services.

The category of service changes can be considered to set the service catalog for strategies,
management, and recovery. Request for a fast response to make changes in the system can
be made by performing a matching process between the occurred facts against the facts
in the structure of the knowledge tree. The service catalog consists of business-process
service which contains the entire PSn and technical service (Tsn). Tsn relates to all techni-
cal specifications of the technology. Figure 13.8 shows the adaptation mechanisms from
capturing events by the agent from the fact (f1, f2, ..., fn) in the system environment. The
agents also capture the context of information from the service catalog (PSn, Tsn) until the
action implementation.

An event is the information of any context which is connected with the specification of
the new facts inside environmental and service catalog (¥ = f1, f2 ... fu; PSn, TSn). The
created condition will evaluate the situation in accordance with the occurred specific
events, including the captured characteristics of the service and the changes in every
context (Q = fin «— PSn, fn «<— TSn). So the evaluation of the service level agreement
(SLA) is performed to select the most appropriate action behavior.

Event Condition Action
Environment Service catalog
Context-1 Context-1 P SLAPq : gda'?t;mrll
Yx:f1(x) | Context-n |y ps, (x) Context-2 | S i gloiflectn:

Hx: fn (x) | B TSa(x) | e —=TSn —

Charge fact-n

| Change facttn

Ser fice fact-n

Service fact-n

act-1 ... act-n

FIGURE 13.8
The dynamic behavior of the system.

314 The Internet of Things

Based on the prevailing condition, the action of adaptation is performed (86 = E-tn; R-tn).
The reconfiguration process of evolution (E-t1, E-t2, ... E-tn) at the time (f) made upon the
consideration of the SLA attainment targets evaluation, although the action of reconfigura-
tion (R—t1, R-t2, ... R—tn) or the handling changes that have notbeen stipulated in the SLA.
Basically, this ’Sn adaptation action deals with the authorization of the service portfolio,
for example, when the service should be updated, replaced, maintained, refactored, dis-
missed, and rationalized. All of these services represented adaptation actions within the
control of changes to the structure of the tree of knowledge.

13.4.2 System Configuration

The mechanisms are developed to manage the service catalog, as shown in Figure 13.9.
The modeling process uses the TAOM4E tools (TAOMA4E n. d.). A goal of the cyber-city
system services is managed using three subgoal activities such as the user interface, ser-
vice application, and service providers. Each goal can have subgoals and also plans that
contribute to the soft goal.

The modeling services through the goals element, as shown in Figure 13.9, are mapped
into the software components as shown in Figure 13.10. Each goal and plan will form
a primitive component so that there are four component groups—3 groups serve to
detect the context and 1 group as the reconfiguration components. The three groups are
“detect context-1” for the user interface, “detect context-2” for the service application,
and “detect context-3" for the service provider. All three groups of these components
require a group of components that has the function to perform the reconfiguration; the

—T =
. - AND-decompaosition OR-decampasition Means-ends Caontribution (++, +, -, —)

i
B

FIGURE 13.9
The service catalog management for a cyber-city system.

Self-Adaptive Cyber-City System 315

User interface Service application Service provider
—. Detect device —. Request for change —. Internal
—. Detect role —. Detect events —.' External
—_| Detect context-1 —_) Detect context-2 —_) Detect context-2

Reconfiguration (@—l——————) Detect context-n
| ! [J

Other contexts

Component-n i ‘ Component-1 Component-2

Analyze service . =Provided service port | = Required service port

FIGURE 13.10
Software components configuration.

reconfiguration components will determine the adaptation strategies for each component
that needs it, so the presence of this component is generic. That means if at run-time sys-
tems require the addition of new components, then automatically, these components can
be added as shown in the dashed line in Figure 13.10. It is an example of adding a new
component to detect new context. Likewise, if a component is not needed or need to be
changed or need to be reused, it can be executed at run-time.

The request for change component is primitive for the component that requires recon-
figuration. The model is initialized by the variable the component dynamic, which is
determined by conditions at run-time. Achievement of the goal-service application con-
sists of features, time, options, and priority. This achievement is the target of the com-
ponent. This target is activated based on the soft-goal criteria and constraints. The soft
goal is a consideration of the contribution, against the nonfunctional system, whereas
constraints are the domain assumptions, which are set based on the strategy reconfig-
uration as described in Section 13.3. The components of “Detect Context-2” is a com-
posite component that describes the primitive component interconnect and needs with
the component reconfiguration through the type of OR relations in accordance with the
modeling goal.

Based on the configuration of developed components, each component will establish
a knowledge according to the needs of their respective functions. Figure 13.11 will illus-
trate the knowledge tree from the results of software components operations. For example,
the user interface and its goal plan “detect context-1” will form a tree of actors or users,
whereas the goal service application with the plan “detect context-2” will form a tree of
data or services, so does the other goals and plans.

316 The Internet of Things

Actor/User Data/Service

Mapping Mapping
Y Y

Actor (A) Tree Data (D) Tree

(An, Dn) §&——— Al

/v) (Dn) ¢~ D2 }
Ad)
verd— A2
(An, Dn}
A9

A5
saw AnDn}/\ll .

FIGURE 13.11
The mapping of components into the knowledge tree.

|
13.5 Discussion and Conclusion

13.5.1 Discussion

SAS is a research area that has a broad spectrum because it deals with a variety of factors
and various conditions that must be recognized. Discussion performed by limiting the
scope of the basic goal-oriented in requirements engineering approach.

In this article, we introduced an approach that is based on the goal-oriented in require-
ments engineering approach by inserting the additional elements through the primitive
construction of the system as discussed in Sections 13.3 and 13.4. Figure 13.12 shows the
overall architecture models, which can be used as a guide for developers in constructing a
SAS in general, and self-adaptive cyber-city system in the [oT concept in particular.

Description of the system-development model in Figure 13.12 is as follows:

1. The development activities begin with the goal modeling to represent the loT
domain model. The available tools at this stage can be adjusted with an adopted
goal-model approach, for example:

a. TAOM4E (TAOMIZE n. d.) to model Tropos (Bresciani et al., 2004)
b. Objectiver (http:// www.objectiver.com/) to model KAOS (Dardenne et al., 1993)

Self-Adaptive Cyber-City System

Goal model

R

l

Model information

Goal (F, NF) priority
and constraints
description

Parser

Architectural
description
languages

— Configurator -

FIGURE 13.12
Development model of a system.

317

Inference engine

o Specification

NRules

Voo

Request Result

I \/

Formal model
specification

Control

— Specification -#
component

A

Components

Architectural
configuration
{Component
dependencies)

c. Open OME (http://www.cs.toronto.edu/km/openome/)
STS-ml (http: //istar.rwth-aachen.de/tiki-index.php?page=i*+Tools)

OmniGraffle (http://www.omnigroup.com/omnigraffle), and others

Or we can arrange a description of this goal by developing its metamodels,
for example, using EMF (http://www.eclipse.org/modeling/emf/updates/ or
http://www.eclipse.org /modeling/emf/downloads/).

2. By the time of preparing the description of these goals, we need to ensure that
any functional (F) requirement should be represented as a goal and nonfunctional
(NF) requirements as soft-goals that can reflect the quality criteria of the system.
How to determine the parameters of the priorities and constraints are discussed

in Section 13.3.

3. After mapping the description of the goals thathave been made in the architecture
description language, we configure it into a software component. This is accom-
plished by using a software to generate the required components.

4. The preparation of the software component architecture can refer to Section 13.3.4.
The supporting code generator tools such as java emitter templates (JET) Template
(http://www.eclipse.org/modeling /m2t/downloads/) can be used to transform
the eclipse modeling framework (EMF) meta-model. Or some other tools men-
tioned in point a, which has been equipped with the code generation facility.

5. The component control will coordinate all the components to give the inference
function. This component generates formal model specifications to perform the

selected reasoning tasks.

318 The Internet of Things

6. The components of inferenceengine can be developed by drafting rules, as discussed
in Section 13.3.3. This rule-based system can also be modeled using the EMF
meta-model tools. Some of the tools that can be used as an engine rule are CLIPS
(http://www.ghg net/clips /CLIPS. html), JESS (http://wwwjessrules.com/jess/
download.shtml or http://herzberg.ca.sandia.gov /jess/), iDREW (http://www.
jdrew.org /{DREWebsite /{DREWhtml), Mandarax (http://mandarax.sourceforge.
net/), or using the Datalog Rules and DLV inference engine (Leone et al., 2006),
and others; they can be adapted to the description of the requirements of the goal.

The selection of tools that will be used in this [oT system development must be definitely
determined by studying the alignment between the description of goals and the needs of
the inference engine by considering any capabilities of tools to cover all requirements from
the developed concept.

13.5.2 Conclusion

Characteristics of the cyber-city system have much diversity of elements and are very
dynamic; it is caused by the very quick growth of the environment. The proposed
solution in this article is formulated through two approaches. First, importance to
understand and capture the variability in context (IoT concept) and behavior of the
system. This is realized through the domain modeling context with the logic-based
approach. Second, the availability of the knowledge structure and the quality of the
inference engine that can handle the scope of more broad and flexible solution space.
This is realized through the modeling of the inference context with the rule-based
approach.

The main highlight of discussion in this article is the provision of the SAS to meet the
scope of a system life cycle in the loT concept; this relates to the control of automation
which is the part of the main concept of loT. The given idea is an opportunity that can
be followed up in the control of automation of the future of the IoT. So the concept of [oT
system is expected to become more aware and adaptive; all orders can be performed auto-
matically, organized, intelligent, acting independently in context and situation, or event
environment.

The adaptation strategies as a mechanism for reconfiguration are proposed to overcome
this problem; a series of modifications were developed to represent the problem space.
In addition, this strategy also prepares the system to be able to conduct a search of the
solution space as an appropriate alternative solution automatically in the implementation
of the control strategy. The developed concept was inspired by the seven pillars of taklif sys-
tems which are the representations of life in the universe. These pillars are formulated into
the rules of systems with self-adaptive capabilities. We believe this proposed concept will
contribute to the provision of software systems in the context of a dynamic environment,
and especially in the construction of the cyber-city systems in the loT concept. We expect
this concept to accommodate any issues of diversity and dynamism inside the system and
its elements.

Self-Adaptive Cyber-City System 319

References

Abuseta, Y. and K. Swesi. Design patterns for self adaptive systems engineering, International Journal
of Software Engineering & Applications (I[SEA), 6(4), pp. 11-28, 2015.

Agustin, R. D. and I Supriana. Model Komputasi Pada Manusia dengan Pendekatan Agent,
Kolaborasi BDI Model dan Tujuh Pilar Kehidupan sebagai Inspirasi untuk Mengembangkan
Enacted Serious Game, Konferensi Nasional Sistent Informasi (KNSI), ITB, 2012.

Aradea, I. Supriana, and K. Surendro. An overview of multi agent system approach in knowledge
management model, International Conference on Information Technology Systems and Innovation
(ICITSI), 1EEE, School of Electrical Engineering and Informatics, ITB, 2014.

Bratman, E. M. Intentions, Plans, and Practical Reason, CSLI Publications, Stanford, CA, 1987

Bresciani, P, A. Perini, P. Giorgini, F. Giunchiglia, and]. Mylopoulos. TROPOS: An agent-oriented
software development methodology, Journal of Autonomous Agents and Multi-Agent Systems,
8(3): 203-236, 2004.

Cheng, B. H. C,, K. L. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. A. Muller, et al. Using models at
runtime to address assurance for self-adaptive, In Model@run.time Foundations, Applications,
and Roadmaps, Lecture Notes in Computer Science (LNCS), Vol. 8378, pp. 101-136, Springer, 2014.

Daniele, L. M. Towards a rule-based approach for context-aware applications, Master Thesis,
University of Cagliari, Italy, 2006.

Dardenne, A., A. van Lamsweerde, and 5. Fickas. Goal directed requirements acquisition, In Selected
Papers of the Sixth International Workshop on Software Specification and Design, pp. 3-50, Elsevier
Science Publishers BV, Amsterdam, 1993.

Ganek, A. G. and T. A. Corbi. The dawning of the autonomic computing era, IBM Systems Journal,
42(1): 5-18, 2003.

Hirsch, D., J. Kramer, |. Magee, and S. Uchitel. Modes for software architectures. In V. Gruhn and
F. Oquendo (Eds.), EWSA 2006, Lecture Notes in Computer Science (LNCS), Vol. 4344, pp. 113-126,
Springer-Verlag, Berlin, Germany, 2006.

IBM, An Architectural Blueprint for Autononiic Conputing, IBM, Hawthorne, N, 2005.

ITU-T, Overview and role of ICT in smart sustainable cities Telecommunication Standardization
Sector, 2014,

Kramer, J. and . Magee. Self-managed systems: An architectural challenge, Future of Software
Engineering, FOSE'07, pp. 259-268, The ACM Special Interest Group on Software Engineering
(SIGSOFT), IEEE Computer Society, Washington, DC, May 2007.

Leone, N., G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV system for
knowledge representation and reasoning. ACM Transactions on Computational Logic (TOCL),
7(3): 499-562, 2006.

Magee, |, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software architectures.
In Fifth European Software Engineering Conference (ESECY5), Barcelona, September 1995.

Magee, |, J. Kramer, and D. Giannakopoulou. Analysing the behaviour of distributed software
architectures: A case study. In 5th [EEE Workshop on Future Trends of Distributed Computing
Systems, pp. 240-245, 1996.

Mora, M. C. BDI models and systems: Reducing the Gap. In J. P. Muller et al. (Eds.), ATAL'98, LNAI
1555, pp. 11-27, 1999. Springer-Verlag, Berlin, Germany, 1999.

Nabulsi, Dr, R. M. 7 Pilar kehidupan: Alam semesta, akal, fitrah, syariat, syahwat, kebebasan meniilih, dan
waktu, Gema Insani, Jakarta, 2010.

320 The Internet of Things

Nakagawa, H., A. Ohsuga, and S. Honiden. Constructing self-adaptive systems using a KAOS
model, In Proceedings of the SASOW, pp. 132-137, IEEE, 2008.

Pires, L. F, N. Maatjes, M. van Sinderen, and P. D. Costa. Model-driven approach to the imple-
mentation of context-aware applications using rule engines, In M. Miihlhduser, A. Ferscha,
and E. Aitenbichler (Eds.), Constructing Ambient Infelligence. Aml Workshops. Communications in
Computer and Information Science, vol. 11, pp. 104-112, Springer, Berlin, Germany, 2008.

Russell, 5. and P. Norvig. Artificial intelligence, a Modern Approach, 2nd Prentice Hall, Upper Saddle
River, NJ, 2003.

Supriana, I. and D. Aradea. Model self-adaptive sebagai landasan sistem untuk menunjang pen-
umbuhan komunitas, Keynote Paper Seminar Nasional Teknologi Informasi dan Komunikasi
(SENTIKA), Vol. 6, Yogyakarta, Maret 1819, 2016.

Supriana, I. and D. Aradea. Automatically relation modeling on spatial relationship as self-
adaptation ability, Internationl Conference on Advanced Informatics: Concept, Theory and Application
(ICAICTA), Vol. 2, IEEE, Bangkok, Thailand, 2015.

Supriana, I, 5. Wahyudin, and A. Mulyanto. Pengembangan motor inferensi untuk aplikasi
sistem pakar dalam model diagnosa, Technical Report, School of Electrical Engineering and
Informatics, Bandung Institute of Technology, Kota Bandung, Indonesia, 1989

Tool for Agent-Oriented visual Modelling for Eclipse (TAOM4E) and its plugin t2x (Tropos4AS to
Jadex), developed by the Software Engineering group at Fondazione Bruno Kessler (FBK),
Trento, available, including the extensions, at http://selab.fbk.eu/taom.

Wu, C. G. Modeling rule-based systems with EMF, Eclipse Corner Article, Copyright (c) 2004 Chaur
G. Wu. All rights reserved, 2004.

Paper 4

ORIGINALITY REPORT

8.. 2, 1o 5s,

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

5%
* Submitted to Universiti Teknologi Malaysia
Student Paper

Exclude quotes Off Exclude matches <1%

Exclude bibliography On

	Paper 4
	by Paper Aradea

	Paper 4
	ORIGINALITY REPORT
	MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

