BAB II

LANDASAN TEORI

2.1 Machine Learning

Machine Learning adalah ilmu (seni) pemrograman komputer, sehingga mereka bisa belajar dari data(Goleman dkk., 2019). Pembelajaran mesin merupakan sistem yang dapat belajar dengan sendirinya untuk memutuskan sesuatu tanpa harus berulangkali dilakukan pemrograman oleh manusia, sehingga komputer menjadi lebih pintar dan dapat belajar dari data yang dimilikinya.

Menurut (Retnoningsih dan Pramudita, 2020), *Machine learning* bekerja apabila tersedia data sebagai input untuk dilakukan analisis terhadap kumpulan data besar sehingga menemukan pola tertentu. Data adalah bahan input yang digunakan untuk melakukan pembelajaran (*training*) sehingga mesin dapat menghasilkan analisis yang benar. Pada *machine learning* terdapat data *training* dan data *testing*, data *training* digunakan melatih algoritma didalam *machine learning* sedangkan data *testing* digunakan untuk mengetahui performa algoritma dalam *machine learning*. Algoritma ini telah dilatih, yaitu saat menemukan data baru yang belum pernah diberikan dalam data pelatihan.

Machine learning menggunakan teknologi untuk memproses data besar dengan cara yang cerdas untuk menghasilkan hasil yang benar. Menurut teknik pembelajarannya, jenis-jenis pembelajaran mesin dibedakan menjadi supervised learning, unsupervised learning, semi-supervised learning dan reinforcement learning. Supervised learning adalah teknik machine learning yang menggunakan

kumpulan data berlabel (data training) untuk melakukan pembelajaran mesin, sehingga mesin dapat menggunakan fitur-fiturnya untuk mengidentifikasi label input untuk prediksi dan klasifikasi lebih lanjut. Sedangkan *unsupervised learning* merupakan teknik yang dilakukan dengan menarik kesimpulan berdasarkan input data labeled response(Buslim, 2019).

Model klasifikasi *machine learning* dibagi menjadi dua yaitu a) Melatih data lalu membedakannya kedalam class; b) Melakukan evaluasi terhadap objek yang tidak dikenal(Fahrizal dkk., 2020). Klasifikasi merupakan bagian *unsupervised learning*, yang memerlukan persiapan data yang baik serta pemilihan bahasa pemrograman yang mampu mendukung *machine learning*.

2.2 Klasifikasi

Klasifikasi adalah proses pengelompokan yang artinya mengumpulkan benda atau entitas yang sama dan memisahkan objek atau entitas yang tidak sama. Menurut (Sumarlin, 2015) Klasifikasi merupakan proses penemuan model (fungsi) yang menggambarkan dan membedakan kelas data atau konsep yang bertujuan agar bisa digunakan untuk memprediksi kelas dari objek yang label kelasnya tidak diketahui.

Proses klasifikasi didasarkan pada empat komponen (Gorunescu, 2011).

1. Kelas

Variabel dependen yang berupa kategorikal yang merepresentasikan 'label' yang terdapat pada objek.

Contohnya: resiko penyakit jantung, resiko kredit, customer loyalty, jenis gempa.

2. Predictor

Variabel independen yang direpresentasikan oleh karakteristik (atribut) data. Contohnya: merokok, minum alkohol, tekanan darah, tabungan, aset, gaji.

3. Training dataset

Satu set data yang berisi nilai dari kedua komponen di atas yang digunakan untuk menentukan kelas yang cocok berdasarkan predictor.

4. *Testing dataset*

Berisi data baru yang akan diklasifikasikan oleh model yang telah dibuat dan akurasi klasifikasi dievaluasi.

2.3 Adaptive Boosting

Boosting merupakan konsep machine learning dengan mengkombinasikan beberapa algoritma classifier yang lemah untuk membentuk suatu classifier yang kuat. Sedangkan Adaptive boosting merupakan algoritma boosting yang mampu menyesuaikan secara adaptif nilai error yang dihasilkan oleh classifier lemah untuk dijadikan acuan pada proses pelatihan classifier berikutnya. AdaBoost digunakan karena mudah diimplementasikan(Prasetio dan Susanti, 2019) dan fleksibel maka dapat dikombinasikan dengan berbagai algoritma.

Adapun tahapan-tahapan *Adaptive Boosting* yang dilakuan pada penelitian ini adalah sebagai berikut:

- 1. Membagi data menjadi data latih da data uji kedalam beberapa scenario.
- 2. Menginisialisasi atau mengaplikasikan bobot yang sama untuk setiap data latih yaitu $w_n = 1/N$ dengan N merupakan jumlah data latih.
- 3. Menentukan jumlah iterasi maksimal.

4. Menentukan prediksi kelas data uji dan menghitung ketepatan akurasi

2.4 Algoritma K-Nearest Neighbor

Menurut (Arifin, 2019) Algoritma *K-Nearest Neighbor* diartikan sebagai suatu metode yang dapat melakukan klasifikasi data terdekat berdasarkan tetangga atau data sebelumnya sebagai sample untuk menemukan hasil akhir. Algoritma ini termasuk kedalam kelompok algoritma instance-based learning(Diwahana dkk., 2019). K-NN dibagi menjadi dua proses, yaitu *training* dan klasifikasi atau *testing*. Pada proses *training*, K-NN melakukan penyimpanan vektor-vektor fitur serta klasifikasi dari data pembelajaran. Pada fase klasifikasi, fitur-fitur yang sama dihitung untuk data yang akan diuji coba (yang klasifikasinya tidak diketahui). Adapun langkah-langkah untuk menghitung metode Algoritma K-Nearest Neighbor:

- a. Menentukan Parameter K atau Jumlah tetangga paling dekat.
- b. Menghitung jarak *Euclid* atau *queri instance* pada masing-masing objek terhadap data sampel yang diberikan.
- c. Mengurutkan objek-objek ke dalam kelompok yang mempunyai jarak *Euclid* terkecil.
- d. Mengumpulkan kategori Y atau Klasifikasi K-Nearest Neighbor
- e. Dengan menggunakan kategori *Nearest Neighbor* yang paling banyak maka dapat dilakukan prediksis nilai *queri instance* yang telah dihitung.

Perhitungan jarak ketetanggan menggunakan algoritma euclidien seperti yang ditunjukkan pada persamaan 1.

$$euclidean = \sqrt{((a1 - b1)^2 + \dots + (a2 - b2)^2)}$$
 (1)

Dimana a = a1, a2, ..., an, dan b = b1, b2, ..., bn mewakili n nilai atribut dari dua record. Sebuah titik akan dilakukan prediksi dari jenisnya berdasarkan klasifikasi terbanyak dari <math>neighbor di sekitarnya,

2.5 Confusion Matrix

Confusion matrix adalah suatu metode yang biasanya digunakan untuk melakukan perhitungan akurasi pada konsep data mining. Confusion matrix adalah media yang berguna untuk menganalisis seberapa baik classifier dapat mengenali tupel dari kelas yang berbeda(Sumiah and Mirantika, 2020).

Evaluasi mengunakan *confusion matrix* akan menghasilkan nilai *accuracy*, *precision*, dan *recall*. *Confusion matrix* merupakan tabel matrix yang terdiri dari dua kelas, yaitu kelas yang satu dianggap sebagai positif dan yang lainnya negatif.

Tabel 2. 1 Tabel Matriks

Vlacifikasi yang banan	Diklasifikasikan sebagai				
Klasifikasi yang benar	+	-			
	True	False			
+	Positive	Negative			
	False	True			
-	Positive	Negative			

Keterangan:

- 1. True positive : jumlah record positif yang diklasifikasikan sebagai positif,
- 2. False positive: jumlah record negatif yang diklasifikasikan sebagai positif,
- 3. False negative: jumlah record positif yang diklasifikasikan sebagai negatif,

4. True negative: jumlah record negatif yang diklasifikasikan sebagai negative.

2.6 Feature Encoding

Dalam *Machine Learning*, terdapat hal yang harus diperhatikan yaitu bahwa sebagian algoritma bekerja lebih maksimal dengan data bertipe numerik untuk mencapai hasil yang lebih baik. Perkembangan data secara pesat membuat tipe data tidak hanya berupa numerik, namun juga berupa teks atau label pada suatu dataset. Oleh karena itu, dalam penelitian perlu dilakukan mengubah data menjadi numerik untuk membuat sebuah model. Salah satu teknik yang dapat dilakukan adalah feature encoding yaitu teknik mengkonversi variabel teks atau kategorik menjadi nilai numerik. Terdapat dua cara yang paling umum dilakukan dengan menggunakan *Label Encoder* atau *One Hot Encoder* sebagai berikut:

- Label Encoding: metode ini mengacu pada konversi label ke dalam bentuk angka sehingga dapat mengubahnya menjadi bentuk yang dapat dibaca oleh mesin, langkah ini merupakan pre-processing data yang penting untuk dataset terstruktur dalam supervised learning.
- One Hot Encoding: metode ini akan mengkonversi setiap labelnya menjadi 0 dan 1, dan setiap label akan dipecah menjadi beberapa kolom sesuai dengan banyak label.

2.8 State of The Art Bidang Penelitian

Tabel 2.2. Menunjukan perbandingan penelitian sebelumnya yang berhubungan dengan focus penelitian komparasi algoritma klasifikasi. Terdapat

beberapa kesamaan serta perbedaan dari masing-masing penelitian. Hal ini dapat dilihat dari penggunaan metode serta algoritmanya.

Tabel 2. 2 State of The Art Penelitian Terkait

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
1.	Elly Firasari, Nurul	2020	Comparation of K-	Pemerintah memiliki beberapa	Algoritma klasifikasi Naïïve
	Khasanah, Umi		Nearest Neighboor (K-	program bantuan yang dilaksanakan	Bayes memiliki akurasi lebih
	Khultsum, Desiana		NN) and Naive Bayes	diantaranya bantuan Beras Miskin,	tinggi dibandingkan algoritma K-
	Nur Kholifah,		Algorithm for the	Program Keluarga Harapan (PKH),	NN dalam klasifikasi penduduk
	Rachman		Classification of the Poor	Bantuan Langsung Tunai (BLT).	miskin dalam penerima bansos di
	Komarudin, dan		in Recipients of Social	Proses klasifikasi penerima bansos	Desa Somokerto. Algoritma
	Wiwiek Widyastuty		Assistance	masih dilakukan secara manual	Klasifikasi Naive Bayes
				yang dinilai kurang akurat saat	memberikan hasil klasifikasi
				mendapatkan hasil penerima	dengan akurasi 89,04%
				bansos. Kemudian, dua metode	sedangkan algoritma K-NN
				yang memberikan hasil perhitungan	menghasilkan klasifikasi dengan
				terbaik adalah Naïıve Bayes dan K-	akurasi 87,67%. Perhitungan dua
				NN, yang digunakan untuk	algoritma tersebut termasuk
				menghitung penerima bantuan	dalam kategori klasifikasi yang
				sosial di desa Somokerto.	baik.

2.	Aah Sumiah, Nita	2020	Perbandingan Metode K-	Pada penelitian ini membandingkan	Perbandingan metode K-Nearest
	Mirantika		Nearest Neighbor dan	dua algoritma untuk mengetahui	Neighbor dan Naive Bayes untuk
			Naive Bayes untuk	algortima yang paling cocok	rekomendasi penentuan
			Rekomendasi Penentuan	digunakan dalam rekomendasi	mahasiswa penerima beasiswa
			Mahasiswa Penerima	penentuan mahasiswa penerima	ini menghasilkan bahwa
			Beasiswa pada	beasiswa menggunakan algoritma	algoritma K-Nearest Neighbor
			Universitas Kuningan	K-Nearest Neighbor dan algoritma	mempunyai akurasi yang lebih
				Naive Bayes. algoritma ini di pilih	tinggi yaitu 100% dibandingkan
				dikarenakan dua algoritma tersebut	algoritma <i>Naïve Bayes</i> yang
				adalah algoritma yang populer	menghasilkan akurasi sebesar
				digunakan dalam proses	99,89%.
				pengklasifikasian.	
3.	Devi Yunita	2017	Perbandingan Algoritma	Penelitian analisa kredit ini	Perbandingan dua algoritma
			K-Nearest Neighbor Dan	menggunakan perbandingan dari	yaitu algoritma K-Nearest
			Decision Tree	Algoitma K-nearest neighbor (K-	Neighbor dan Decision Tree
			Untuk Penentuan Risiko	NN) dimana penelitian ini	untuk penentuan risiko kredit
			Kredit Kepemilikan	menggunakan metode dengan	kepemilikan mobil ini
			Mobil	mencari kedekatan kriteria kasus	menggunakan aplikasi Rapid
				baru dengan kriteria kasus lama	Miner dan hasilnya algoritma <i>K</i> -

				yang didasarkan pada kriteria kasus	Nearest Neighbor memiliki nilai			
				yang mendekati, dan menggunakan	akurasi yang lebih baik yaitu			
				Metode Decision tree yaitu metode	denan akurasi 98.18%.			
				yang ada pada teknik klasifikasi				
				dalam data mining.				
4.	Ade Irma Prianti,	2020	Perbandingan Metode K-	Perbandingan metode K-Nearest	Hasil dari perbandingan metode			
	Rukun Santoso,		Nearest Neighbor Dan	Neighbor dan Adaptive Boosting	K-Nearest Neighbor dan			
	Arief Rachman		Adaptive Boosting Pada	dengan menggunakan base learner-	Adaptive Boosting tersebut			
	Hakim		Kasus Klasifikasi Multi	nya yaitu Classification and	mendapatkan model terbaik			
			Kelas	Regression Trees (CART) pada	dengan akurasi tertinggi yaitu			
				kasus klasifikasi multi kelas.	pada metode Adaboost dengan			
					banyak nilai accuracy, precision			
					serta <i>recall</i> yang lebih besar			
					dibandingkan dengan nilai pada			
					model algoritma K-Nearest			
					Neighbor.			
5.	Riyan Latifahul	2019	Klasifikasi Penerima	Status keluarga miskin sebagai	Penelitian dilakukan melalui			
	Hasanah, Muhamad		Dana Bantuan Desa	penerima bantuan sangat penting	tahap perhitungan manual untuk			
	Hasan, Witriana		Menggunakan Metode	dilakukan agar bantuan	mengetahui kelayakan atau			

	Endah Pangesti,		KNN (K-Nearest	penanggulangan kemiskinan dari	ketidaklayakan data baru, dan
	Fanny Fatma Wati,		Neighbor)	pemerintah dapat dialokasikan	aplikasi Rapidminer digunakan
	dan Windu Gata			dengan tepat, maka dari	untuk menguji keakuratan
				permasalahan tersebut dilakukanlah	kumpulan data dengan berbagai
				pengujian K-Fold Cross Validation	nilai K. Hasilnya ialah dengan
				pada algoritma K-Nearest	K=15 dan K=30 data yang baru
				Neighbors untuk memprediksi	(D160) memiliki kategori "Tidak
				penerimaan dana bantuan desa.	Layak" dengan akurasi sebesar
					100%. Kemudian dengan nilai
					K=45, K=60 dan K=75 data yang
					baru (D160) memiliki kategori
					"Layak" dengan akurasi sebesar
					81,25%.
6.	Rizki Tri Prasetio,	2019	Prediksi Harapan Hidup	Kanker paru-paru menjadi salah	Hasil menunjukan bahwa metode
	Sari Susanti		Pasien Kanker Paru Pasca	satu penyakit penyebab kematian	yang digunakan menghasilkan
			Operasi Bedah Toraks	terbanyak di Indonesia. Faktor	tingkat akurasi prediksi harapan
			Menggunakan Boosted k-	penyebabnya oleh asap rokok.	hidup sebesar 85.11% yang
			Nearest Neighbor	Operasi toraks adalah salah satu	menggunakan validasi 10 fold
				solusi utama untuk kanker paru-	cross validation dengan

				paru. Namun, ada banyak risiko dan	parameter nilai k pada algoritma
				komplikasi setelah operasi toraks	k-nearest neighbor bernilai 5
				yang berujung pada kematian. Maka	
				akan dilakukan prediksi harapan	
				hidup pasien. Prediksi dilakukan	
				dengan menganalisis kondisi pasien	
				sebelum dan sesudah operasi.	
				Adaptive Boost digunakan sebagai	
				optimasi level algoritma pada	
				algoritma k-nearest neighbor.	
7.	Aah Sumiah, dan	2020	Perbandingan Metode K-	Membandingkan algoritma K-	Hasil dari algoritma K-Nearest
	Nita Mirantika		Nearest Neighbor dan	Nearest Neighbor dan algoritma	Neighbor diperoleh akurasi
			Naive Bayes untuk	Naive Bayes untuk rekomendasi	sebesar 100% dan Algoritma
			Rekomendasi Penentuan	penerima beasiswa pada universitas	Naive Bayes diperoleh akurasi
			Mahasiswa Penerima	kuningan. Alasan dipilihnya metode	sebesar 99,89%. Hal ini
			Beasiswa pada	ini adalah karena kedua algoritma	menunjukkan bahwa pada data
			Universitas Kuningan	ini biasa digunakan dalam proses	penerimaan beasiswa ini tingkat
				klasifikasi data. Hasilnya data di	akurasi K-nearest Neighbor lebih
				implementasikan menjadi sistem	tinggi dibandingkan dengan

				informasi yang menggunakan visual	Naive Bayes sehingga lebih
				basic.net dan sql server.	cocok digunakan algoritma K-
					nearest neighbor untuk
					rekomendasi penerima beasiswa.
					Banyaknya data latih akan
					mempengaruhi keakuratan data.
8.	Hilda Nur Zerlinda,	2019	Klasifikasi Calon	Pelamar Bidikmisi UNS selalu	Penggunaan algoritma KNN
	Isnandar Slamet,		Penerima Bidikmisi	bertambah setiap tahunnya, namun	untuk membandingkan hasil
	dan Etik Zukhronah		Dengan Menggunakan	kuota peserta yang diterima tidak	prediksi klasifikasi dengan data
			Algoritma K-Nearest	sebanding dengan jumlah pendaftar.	observasi bidikmisi.Data yang
			Neighbor	Maka dilakukanlah klasifikkasi	digunakan sebanyak 1539 data
				dengan algoritma K-Nearest	latih dan 500 data uji.Jadi dapat
				Neighbor untuk mengklasifikasikan	disimpulkan bahwa hasil
				calon penerima UNS Bidikmisi.	perhitungan yang diterapkan
				Dalam penelitian ini memiliki	menghasilkan nilai akurasi
				beberapa variabel bebas seperti	sebesar 84,4% Untuk $k = 5$.
				pendapatan orang tua, pekerjaan ibu	
				orang tua, jumlah tanggungan, luas	
				tanah, sumber air dan kepemilikan	

					rumah. Tahapan pelaksanaan penelitian ini adalah menormalisasi data, membagi data menjadi data	
					latih dan data uji, serta menentukan	
					nilai k.	
9.	Dita N	oviana,	2019	Analisis Rekomenda	si Dengan semakin banyaknya	Hasil dari algoritma k-NN dan
	Yuliana S	Susanti,		Penerima Beasisy	ra mahasiswa yang mengajukan	C4.5 dengan akurasi masing-
	Irwan Susan	to		Menggunakan Algoritr	a beasiswa, metode klasifikasi	masing sebesar 90.7% dan
				K-Nearest Neighbor (L- diperlukan untuk membantu	88.3%. Hasil penelitian
				Nn) Dan Algoritma C4.	menentukan siapa yang berhak	menunjukkan bahwa variabel
					mendapatkan beasiswa PPA di	yang berpengaruh adalah IPK,
					Universitas Sebelas Maret. Metode	prestasi, penghasilan, jumlah
					yang digunakan dalam analisis ini	orang tua bekerja dan jumlah
					adalah K-nearest neigghbor dan	tanggungan. Variabel yang
					C4.5. Hasil klasifikasi akan	paling berpengaruh adalah
					digunakan untuk pengambilan	variabel IPK.
					keputusan rekomendasi penerima	
					beasiswa.	

10.	Erlangga	Dwi	2018	Implementasi	Algoritma	Dalam mem	prediksi kelul	usan ujian	Nilai akurasi	pengujia	an algoritma
	Kurniawan,	dan		K-Nearest	Neighbor	nasional,	sekolah	masih	K-Nearest	Neighbo	or dengan
	Mufti			Dengan	Metode	melakukann	nya secara ma	nual yaitu	pengukur	jarak	Manhattan
				Klasifikasi	Dan	menggunaka	an Microsof	ft Excel.	Distance bea	dasarkan	ı jumlah uji
				Pengukuran Jarak		Berdasarkar	n hal tersebu	t, melalui	yang dilaku	kan seba	nyak 3 kali
				Manhattan	Distance	algoritma I	K-Nearest da	n metode	dengan jum	lah 201 j	urusan IPA
				Untuk Prediksi	Kelulusan	jarak "Man	hattan Distan	ce" dapat	dan 210 jui	usan IPS	S selama 3
				Un Berdasarl	kan Hasil	diprediksi b	bahwa siswa y	yang lulus	angkatan did	lapatkan	nilai K = 5
				Nilai Tryout	Berbasis	ujian nasion	nal akan terbag	gi menjadi	untuk jurusan IPA dan nilai K =		
				Java Desktop	Pada Sma	dua kelas	yaitu Lulus d	dan Tidak	3 untuk jurusan IPS dengan nilai		
				Harapan Jaya 2	2	Lulus. At	tribut terseb	out akan	rata-rata ting	asi tertinggi	
						mempengar	uhi kinerja	akademik	89.08% di	tahun	2014/2015
						siswa.			untuk jurusan IPA dan nilai ra		
									rata tingka	t akuras	si tertinggi
									97.30% dital	nun 2015	/2016 untuk
									jurusan IPS.		
11.	Sumarlin		2015	Implementasi	Algoritma	Dengan p	erkemebangar	n bidang	Hasil pe	rforma	algoritma
				K-Nearest	Neighbor	akademik	khususnya	perguruan	knearest nei	ghbor m	enggunakan
				Sebagai	Pendukung	tinggi, bea	siswa adalah	masalah	metode	cross	validation,

Keputusan Klasifikasi yang menarik untuk diteliti. Confusion Matrix dan kurva Penerima Beasiswa PPA Penelitian ini membahas tentang Receiver Operating dan BBM klasifikasi beasiswa PPA dan BBM Characteristic (ROC), akurasi yang dihasilkan untuk beasiswa berdasarkan variabel yang telah ditentukan PPA mencapai 88,33% dengan dengan menerapkan algoritma nilai Area Under Curva 0,925 k-nearest neighbour. pemilihan record Proses penerima dari 227 dataset, beasiswa untuk meningkatkan sedangkan akurasi yang prestasi akademik dan bantuan dihasilkan untuk beasiswa BBM mahasiswa memerlukan mencapai 90% dengan nilai AUC belajar sistem pendukung keputusan (SPK) 0,937 dari 183 record dataset, membantu akurasi yang dihasilkan untuk untuk memberikan alternatif solusi. gabungan beasiswa PPA dan BBM mencapai 85,56% dan nilai AUC sebesar 0,958. dikarenakan nilai AUC ada pada rentang 0,9 sampai 1,0 maka masuk kedalam kategori sangat baik.

12.	Moh. Syaiful Anam	2021	Sistem	Pendukung	Dalam masa pandemi covid -19,	Berdasarkan hasil pengujian
			Keputusan	Bantuan	pandemi ini menyebar ke seluruh	confussion matrix dengan teknik
			Sosial	Dengan	sendi kehidupan dan salah satu yang	split validasi, penggunaan
			Menggunakan	Metode	paling menjadi perhatian adalah	metode klasifikasi naïve bayes
			Naive Bayes		dibidang sosial ekonomi. Banyak	terhadap dataset yang telah
					terdapat bantuan Sosial (Bansos)	diambil pada objek penelitian
					yang disalurkan baik oleh	diperoleh tingkat akurasi sebesar
					pemerintah ataupun pihak swasta	73% atau termasuk dalam
					lain. Penelitian ini bertujuan untuk	kategori Good. Sementara nilai
					membuat sistem pendukung	Precision sebesar 92% dan Recall
					keputusan bantuan sosial	sebesar 86%. Berdasarkan hal
					menggunakan metode Naive Bayes,	tersebut dapat dinyatakan bahwa
					selanjutnya melakukan Analisa	sistem klasifikasi yang dibangun
					menggunakan tabel Confusion	dapat gunakan sebagai bahan
					Matrix.	masukan bagi pengambil
						keputusan.

Pada *state of the art* tersebut belum ada penelitian yang meneliti membandingkan dua algoritma klasifikasi terbaik yang dihasilkan pada penelitian sebelumnya yaitu algoritma *K-Nearest Neighbor* dan *Adaptive Boosting* dalam menentukan penerima

bantuan sosial. Algoritma *K-Nearest Neighbor* dan *Adaptive Boosting* masing-masing memiliki kekurangan dan kelebihan. Oleh karena itu, pada penelitian ini akan melakukan perbandingan dari kedua algoritma tersebut untuk memperoleh hasil algoritma yang paling maksimal dalam menentukan penerima bantuan sosial.

2.9 Matriks Penelitian

Tabel 2. 3 Tabel Matriks Penelitian

	Penulis/Tahun			Ruang Lingkup									
No.		Judul		Algoritma/Metode				Tujuan			Objek		
110.	1 chuns/ 1 anun	Juuui	Naïve	KNN	Decision	Ada	Klasifikasi	Prediksi	Ban	Bea	Penya	Lain-	
			Bayes		Tree	boost			SOS	siswa	kit	nya	
		Sistem Pendukung											
		Keputusan Bantuan							,				
1.	(Anam, 2021)	Sosial Dengan		-	-	-	-	-		-	-	-	
		Menggunakan Metode											
		Naive Bayes											
		Comparation of K-											
		Nearest Neighboor (K-											
	(Einegeni dlele	NN) and Naive Bayes											
2.	(Firasari dkk.,	Algorithm for the		$\sqrt{}$	-	-	$\sqrt{}$	-		-	-	-	
	2020)	Classification of the											
		Poor in Recipients of											
		Social Assistance											
	(Cymriah dag	Perbandingan Metode											
3.	(Sumiah dan	K-Nearest Neighbor	$\sqrt{}$	$\sqrt{}$	-	-	_		_		-	-	
	Mirantika, 2020)	dan Naive Bayes untuk											

		Rekomendasi Penentuan Mahasiswa Penerima Beasiswa pada Universitas Kuningan										
4.	(Yunita, 2017)	Perbandingan Algoritma K-Nearest Neighbor Dan Decision Tree Untuk Penentuan Risiko Kredit Kepemilikan Mobil	-	√	V	-	-	V	-	-	-	V
5.	(Prianti dkk., 2020)	Perbandingan Metode K-Nearest Neighbor Dan Adaptive Boosting Pada Kasus Klasifikasi Multi Kelas	-	V	-	V	V	-	1	1	-	V
6.	(Yusi, 2021)	Analisa Perbandingan Kinerja Algoritma K- Nearest Neighbor Dan Adaptive Boosting Pada Prediksi Penerima Bantuan Sosial	-	√	-	√	-	√	V	-	-	-

2.10 Relevansi Penelitian

Tabel 2. 4 Tabel Relevansi Penelitian

Peneliti	(Prianti dkk., 2020)	(Yusi Yustikasari, 2021)
Judul	Perbandingan Metode K-Nearest Neighbor Dan	Analisa Perbandingan Kinerja Algoritma K-Nearest
	Adaptive Boosting Pada Kasus Klasifikasi Multi	Neighbor Dan Adaptive Boosting Pada Prediksi
	Kelas	Penerima Bantuan Sosial Pangan Non Tunai
Masalah Penelitian	Melakukan perbandingan antara metode K-Nearest	Membandingkan kinerja dua algoritma klasifikasi
	Neighbor dan Adaptive Boosting untuk	terbaik yang dihasilkan pada penelitian sebelumnya
	mengetahui metode yang lebih baik dalam	yaitu algoritma K-Nearest Neighbor dan Adaptive
	memprediksi kinerja perusahaan di Indonesia yang	Boosting dalam menentukan penerima bantuan sosial
	merupakan kasus klasifikasi multi kelas	pangan non tunai.
Objek Penelitian	Klasifikasi Multi Kelas	Klasifikasi Binary Class
Algoritma / Metode	K-Nearest Neighbor dan Adaptive Boosting dengan	K-Nearest Neighbor dan Adaptive Boosting dengan
	base learning Adaboost menggunakan algoritma	base learning Adaboost menggunakan algoritma
	CART	Decision Tree
Implementasi	Klasifikasi dilakukan dengan Tools RapidMiner	Prediksi dilakukan dengan model Machine Learning
		bahasa pemrograman Python