BAB 3

METODELOGI PENELITIAN

3.1 Lokasi Penelitian

Lokasi penelitian Tugas Akhir ini dilakukan pada Jalan Cieunteung Kecamatan Cihideng Kota Tasikmalaya. Jalan ini termasuk ruas jalan dengan kemacetan lalu lintas akibat banyaknya permukiman dan pertokoan disepanjang jalan. Titik lokasi yang ditinjau mulai dari saluran SD N Cieunteung hingga persimpangan menuju Mayasari Plaza dan saluran pembuang di Gang Baso Gejrot dengan pusat titik banjir terjadi di saluran depan Klinik Assaodah dan persimpangan antara Jalan Sukalaya dengan Jalan Cieunteung. Permasalahan yang terjadi di lokasi penelitian yaitu kondisi saluran kurang baik bahkan dibeberapa titik tidak berfungsi, saluran tersebut tidak mampu menampung debit limpasan karena terdapat sedimen, sampah yang menumpuk, serta *inlet* yang tertutup sehingga saluran tidak bekerja dengan maksimal.

Gambar 3.1 Lokasi Penelitian

3.2 Alat dan Bahan Penelitian

Alat dan Bahan yang dibutuhkan untuk penelitian disajikan pada tabel dibawah ini:

Tabel 3.1 Tabel Alat dan Bahan

No.	Nama Alat dan Bahan	Kegunaan					
1.	GPS (Global Positioning System)	Mengetahui titik koordinat dan elevasi lokasi penelitian					
2.	Theodolite dan Rambu Ukur	Mengetahui elevasi ketinggian dari saluran dan mengukur bedantinggi antara garis bidik dengan permukaan tanah					
3.	Meteran	Mengukur dimensi saluran					
4.	Kamera	Dokumentasi kegiatan selama survey lapangan dan kondisi eksisting saluran					
5.	Laptop	Penunjang proses penelitian					
6.	Google Earth	Mengaplikasikan data lapangan					
7.	Aplikasi SWMM 5.1	Mensimulasikan hasil penelitian					
8.	Aplikasi Arcgis	Membantu untuk proses analisis					

3.3 Teknik Pengumpulan Data

Tahap pengumpulan data yang dibutuhkan untuk penelitian pada saluran darinase Jalan Cieunteung. Adapun data-data yang dibutuhkan diantaranya:

3.3.1 Data Primer

Data primer merupakan data yang didapat secara langsung di lapangan oleh peneliti dengan melakukan survey lapangan. Data primer yang dibutuhkan dalam penelitian ini yaitu berupa dimensi saluran drainase, kondisi eksisting, kemiringan dasar saluran serta luasan daerah tangkapan air lokasi tersebut yang kemudian dilakukan analisis debit limpasan yang terjadi.

3.3.2 Data Sekunder

Data sekunder merupakan data tambahan yang diperlukan dalam penelitian untuk menunjang serta melengkapi data primer yang bisa diperoleh melalui materi, jurnal atau karya tulis ilmiah, dan mendatangi instansi terkait untuk memperoleh data-dat apendukung yang diperlukan. Data sekunder yang diperlukan untuk penelitian ini diantaranya

a) Data Curah Hujan

Data curah hujan yang digunakan diperoleh dari stasiun hujan terdekat dengan daerah tangkapan air, diantaranya stasiun hujan Cimulu, stasiun hujan Lanud Wiriadinata dan stasiun hujan Kawalu selama 14 tahun.

Data curah hujan stasiun cimulu

Tabel 3.2 Data Curah Hujan Stasiun Cimulu

	Tahun		Bulan											
No		Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des	
1	2006	73	86	79	42	69	49	13	18	42	78	78	78	
2	2007	79	108	98	107	79	67	19	7	9	62	131	103	
3	2008	67	112	62	97	108	21	12	4	15	39	100	138	
4	2009	98	132	102	87	81	48	47	0	6	87	71	71	
5	2010	86	160	95	38	48	50	90	73	78	88	135	165	
6	2011	57	56	74	108	108	26	236	0	5	106	127	48	
7	2012	135	241	110	211	26	23	15	0	0	93	35	41	
8	2013	53	80	91	103	103	212	231	7	0	114	49	151	
9	2014	50	102	104	38	137	35.5	213	11	4	41	113	210	
10	2015	57	90	52	47	47	183	15	0	0	0	96	92	
11	2016	69	98	79	70	66	23	111	70	87	84	92	52	
12	2017	94	134	55	78	114	39	105	5	104	62	75	45	
13	2018	52	132	85	72	58	36	2	6	14	44	116	100	
14	2019	75	75	80	90	57	18	8	1	2	50	31	83	

Tabel 3.3 Data Curah Hujan Stasiun Lanud

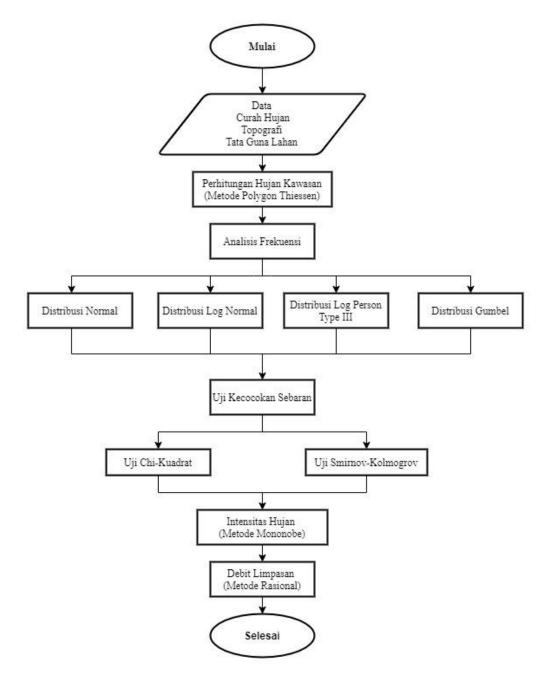
			Bulan												
No	Tahun	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des		
1	2006	64	69	62	43	45	50	41	38	34	97	97	70		
2	2007	81	77	56	77	77	31	10	2	8	84	88	69		
3	2008	100	92	74	81	62	2	13	5	34	51	88	49		
4	2009	63	58	77	81	31	44	31	31	88	2	88	58		
5	2010	46	88	70	31	35	46	44	130	87	58	76	105		
6	2011	24	81	77	31	35	35	81	130	87	58	79	22		
7	2012	69	46	70	77	87	69	46	16	2	31	79	48		
8	2013	130	31	35	79	129	123	95	35	16	31	40	30		
9	2014	35	81	48	95	145	150	129	56	14	25	63	130		
10	2015	74	123	80	117	20	27	10	3	0	0	40	61		
11	2016	66	93	79	39	63	29	115	80	74	92	121	50		
12	2017	135	60	66	78	63	66	36	6	24	80	107	135		
13	2018	65	140	80	89	62	33	2	8	10	44	135	128		
14	2019	74	68	90	84	62	15	7	1	2	74	41	55		

Tabel 3.4 Data Curah Hujan Stasiun Kawalu

			Bulan													
No	Tahun	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des			
1	2006	63	28	69	37	39	30	21	0	0	7	30	53			
2	2007	59	61	55	69	63	50	8	4	4	63	67	65			
3	2008	38	21	47	56	64	15	5	7	27	76	95	70			
4	2009	55	83	70	27	59	10	84	1	18	42	53	43			
5	2010	52	115	85	72	58	36	2	6	14	69	98	128			
6	2011	43	51	1108	45	101	28	72	0	4	72	50	60			
7	2012	60	61	51	46	15	11	4	2	0	67	73	79			
8	2013	53	62	58	61	79	42	0	6	27	39	0	0			
9	2014	65	50	60	71	87	107	108	104	2	11	78	128			
10	2015	9	99	64	37	23	23	4	0	0	0	78	59			
11	2016	85	78	74	67	53	27	55	58	82	39	108	47			
12	2017	114	112	32	71	106	31	12	4	55	98	96	70			
13	2018	27	115	95	39	51	42	1	4	22	43	76	44			
14	2019	76	89	60	102	45	25	11	0	1	0	11	140			

b) Peta Topografi

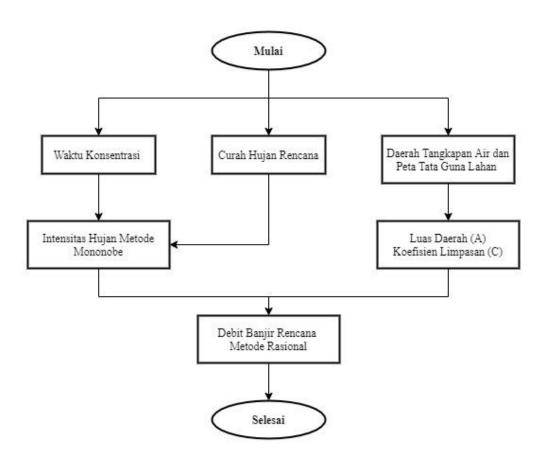
Peta topografi diperlukan untuk menentukan arah aliran air (*streamflow*) dan elevasi pada lokasi penelitian sehingga diperoleh daerah tangkapan air (DTA) pada lokasi penelitian.


c) Peta Tata Guna Lahan

Peta tata guna lahan digunakan untuk menentukan kapasitas infiltrasi dan potensi limpasan permukaan dari sistem penutup lahan.

3.4 Analisis Data

3.4.1 Analisis Hidrologi


Analisis ini mempunyai tujuan untuk menghitung curah hujan rencana pada periode ulang tertentu. Periode yang digunakan dalam penelitian yaitu periode ulang kala 2 tahun, 5 tahun, 10 tahun, 25 tahun dan 50 tahun. Curah hujan rencana didapatkan dengan perhitungan curah hujan kawasan, analisis frekuensi dan uji sebaran.

Gambar 3.2 Flowchart Analisis Hidrologi

3.4.2 Analisis Debit Banjir Rencana

Metode rasional merupakan metode yang dipakai untuk perhitungan debit banjir rencana dimana harus diketahui nilai koefisien limpasan, luas wilayah serta intensitas hujan yang dipengaruhi oleh waktu konsentrasi. Tahap-tahap dalam perhitungan debit banjir rencana disajikan pada gambar dibawah.

Gambar 3.3 Flowchart Debit Banjir Rencana

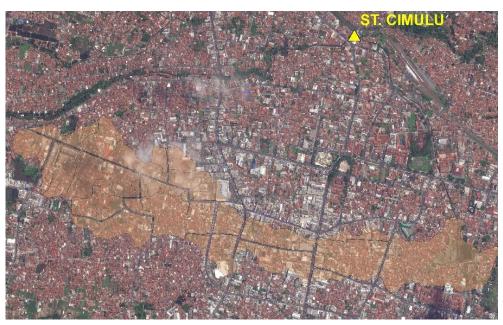
3.4.3 Analisis Kapasitas Saluran Drainase

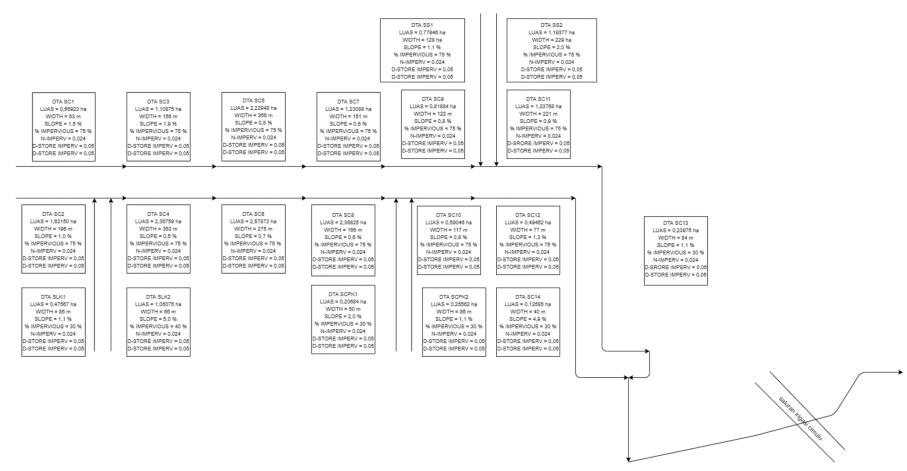
Analisis ini dilakukan untuk mengetahui kapasitas saluran yang akan direncanakan mempunyai eksisting lebih besar atau lebih kecil dari debit banjir rencana. Dalam menganalisis kapasitas saluran, rumus yang digunakan yaitu rummus Manning. Nilai debit banjir rencana dan salauran eksisting dibandingkan kemudian, jika nilai debit saluran eksisting lebih kecil dari debit banjir rencana, maka dapat diketahui bahwa dimensi saluran tidak dapat menampung debit limpasan yang terjadi.

Gambar 3.4 Flowchart Analisis Hiraulika

3.4.4 Pemodelan Alternatif Penanganan Banjir

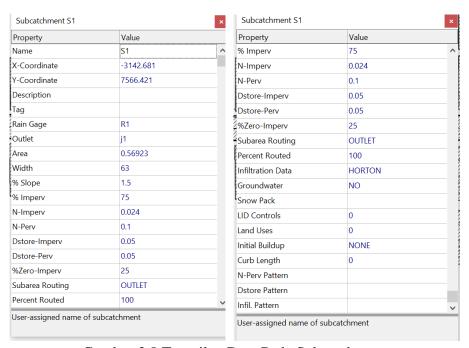
Analisis menggunakan pemodelan EPA SWMM 5.1 membantu dalam menganalisis kapasitas penampang saluran dalam menampung debit limpasan dengan berbagai periode ulang tertentu. Dengan menggunakan simulasi melalui pemodelan ini makan dapat ditemukannya solusi yang tepat untuk pemecahan


masalah yang terjadi di lokasi penelitian. Berikut tahapan-tahapan dalam pemodelan menggunakan program EPA SWMM 5.1.


Gambar 3.5 Flowchart Simulasi EPA SWMM 5.1

a. Input Backdrop dan Koordinat

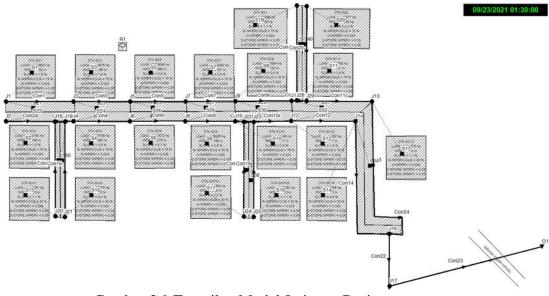
Backdrop diperoleh dari data digital map yang telah diolah terlebih dahulu dengan bantuan *software Arcgis* untuk menentukan daerah tangkapan air serta untuk melihat koordinat yang akan diinputkan kedalam SWMM. Berikut tampilan *inputan* Backdrop dari lokasi penelitian pada SWMM.


Gambar 3.6 Tampilan Backdrop dari Ciitra Satelit

Gambar 3.7 Tampilan Backdrop berupa Skema Sederhana

b. Menentukan Subcatchment

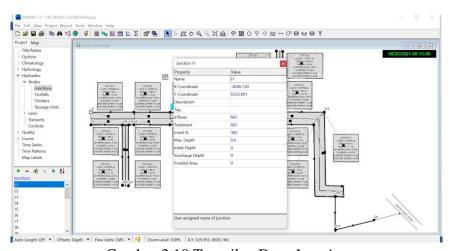
Berdasarkan peta topografi dan arah aliran air menuju saluran, pada lokasi penelitian ini terdapat 40 *subcatchment* dimana 20 *subcatchment* pada lahan dan 20 *subcatchment* pada jalan dan ditampilkan dengan notasi S untuk *subcatchment*. Data yang dimasukkan yaitu luas dan lebar lahan yang berhadapan langsung dengan saluran, persentase kemiringan lahan serta persentase *impervious* lahan. Berikut data parameter tiap *subcathment*.


Gambar 3.8 Tampilan Data Pada Subcatchment

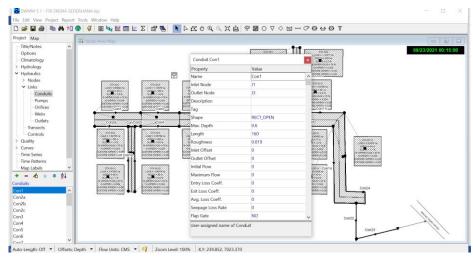
Tabel 3.5 Pembagian Subcatchment

Nama	Outfalls	A	Width	Slope	Impervious	N-Perv	N-Imperv	
Subcatchment	Outians	(ha)	(m)	(%)	(%)	14-1 C1 V		
S1	J1	0.569	63	1.5	75	0.1	0.024	
S2	J2	1.621	196	1	75	0.1	0.024	
S3	J3	1.108	156	1.9	75	0.1	0.024	
S4	J4	2.367	363	0.5	75	0.1	0.024	

Nama	Outfalla	A Width		Slope	Impervious	N. Down	N-Imperv	
Subcatchment	Outfalls	(ha)	(m)	(%)	(%)	N-Perv	N-Imperv	
S5	J5	2.229	356	0.8	75	0.1	0.024	
S6	J6	2.578	275	0.7	75	0.1	0.024	
S7	J7	1.230	151	0.6	75	0.1	0.024	
S8	J8	2.368	166	0.6	75	0.1	0.024	
S9	J9	0.818	122	0.8	75	0.1	0.024	
S10	J10	0.590	117	0.8	75	0.1	0.024	
S11	J11	1.337	221	0.9	75	0.1	0.024	
S12	J12	0.494	77	1.3	75	0.1	0.024	
S13	J13	0.239	84	1.1	30	0.1	0.024	
S14	J14	0.475	40	4.9	30	0.1	0.024	
S15	J18	0.475	85	1.1	30	0.1	0.024	
S16	J19	1.060	56	5	40	0.1	0.024	
S17	J22	0.206	50	2	30	0.1	0.024	
S18	J23	0.255	86	1.1	30	0.1	0.024	
S19	J28	0.779	128	2	75	0.1	0.024	
S20	J29	1.193	229	2	75	0.1	0.024	
S21	J1	0.054	3.5	2	100	0.1	0.011	
S22	J2	0.05	3.5	2	100	0.1	0.011	
S23	J3	0.045	3.5	2	100	0.1	0.011	
S24	J4	0.038	3.5	2	100	0.1	0.011	
S25	J5	0.043	3.5	2	100	0.1	0.011	
S26	J6	0.037	3.5	2	100	0.1	0.011	
S27	J7	0.053	3.5	2	100	0.1	0.011	
S28	J8	0.044	3.5	2	100	0.1	0.011	
S29	J9	0.042	3.5	2	100	0.1	0.011	
S30	J10	0.035	3.5	2	100	0.1	0.011	
S31	J11	0.049	3.5	2	100	0.1	0.011	
S32	J12	0.034	3.5	2	100	0.1	0.011	
S33	J13	0.026	3.5	2	100	0.1	0.011	
S34	J14	0.028	3.5	2	100	0.1	0.011	
S35	J18	0.061	3.5	2	100	0.1	0.011	
S36	J19	0.091	3.5	2	100	0.1	0.011	
S37	J22	0.023	3.5	2	100	0.1	0.011	
S38	J23	0.033	3.5	2	100	0.1	0.011	
S39	J28	0.056	3.5	2	100	0.1	0.011	
S40	J29	0.051	3.5	2	100	0.1	0.011	


c. Pemodelan Jaringan Drainase

Gambar 3.9 Tampilan Model Jaringan Drainase


Pemodelan dilakukan sesuai dengan sistem jaringan drainase yang ada dilapangan, mulai dari *Junction* (Data Elevasi), *Conduit* (Data Dimensi), *Raingage* dan *outfalls*.

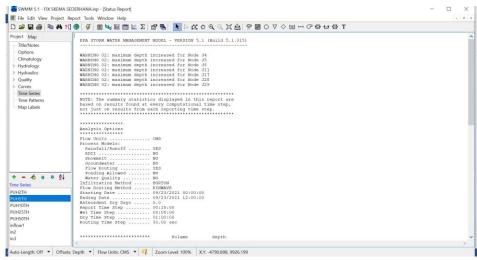
Jumlah *Junction* dalam penelitian ini berjumlah 29 *node*. *Junction* ditampilkan dengan notasi J, data yang diinput yaitu data elevasi saluran.

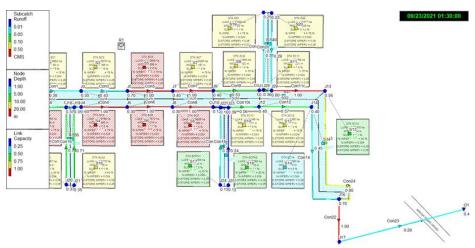
Gambar 3.10 Tampilan Data *Junction*

Jumlah *Conduit* pada penelitian ini berjumlah 23 *conduit* dan ditampilkan dengan notasi Con. Data yang diinput yaitu dimensi saluran, bentuk saluran, panjnag saluran dan koefisien kekasaran.

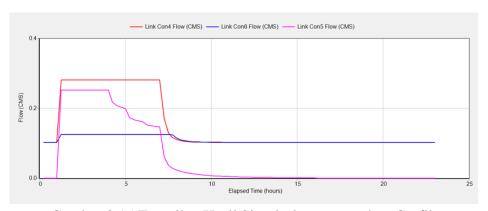
Gambar 3.11 Tampilan Data Conduit

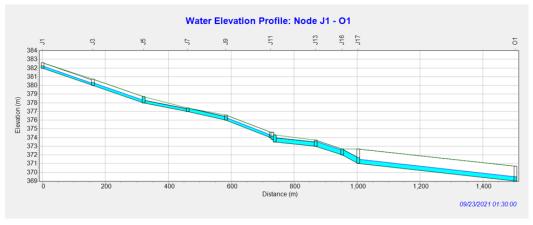
Jumlah *outfalls* pada penelitian ini berjumlah 1 dan ditampilkan dengan notasi Out. *Outfalls* ini mengalirkan aliran dari saluran pembuang menuju *maindrain*.


Data *rain gage* yang dimasukkan adalah data curah hujan yang telah diolah menjadi intensitas hujan jam-jaman dan diinputkan pada *time series*. Data intensitas hujan yang diinput yaitu data intensitas hujan jam-jaman selama 12 jam dan diambil waktu singkat 6 jam dengan periode ulang 2 tahun, 5 tahun, 10 tahun, 25 tahun dan 50 tahun yang ada pada Tabel 4.14

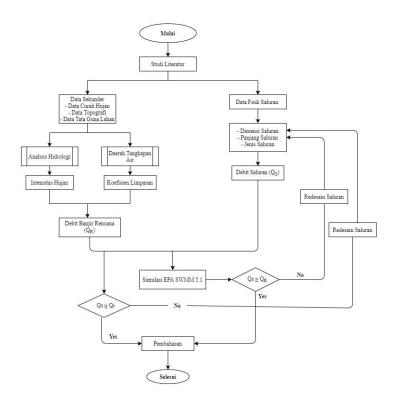

Gambar 3.12 Tampilan Data Rain Gage pada Time Series

d. Pemodelan Aliran pada Sistem Drainase


Simulasi bisa dijalankan apabila semua data telah dimasukkan dan dapat dikatakan berhasil jika $contuinity\ error < 10\%$. Hasil simulasi dapat dilihat dari status report, menggunakan map, menggunakan grafik maupun menggunakan profil aliran.


Gambar 3.13 Tampilan Hasil Status Report

Gambar 3.14 Tampilan Hasil Simulasi menggunakan Map



Gambar 3.15 Tampilan Hasil Simulasi menggunakan Grafik

Gambar 3.16 Tampilan Hasil Simulasi menggunakan Profil Aliran

Tahapan-tahapan penelitian secara keseluruhan dalam Analisis data disajikan dengan diagram alur (flowchart) pada gambar dibawah ini :

Gambar 3.17 Flowchart Analisis Data