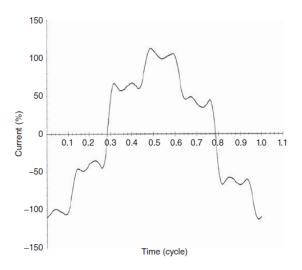
BAB II

LANDASAN TEORI

2.1 Harmonisa

Gelombang sinusoidal yang murni pada jaringan sistem tenaga didapatkan ketika tidak adanya distorsi pada gelombang. Distorsi gelombang tegangan atau arus pada praktik dilapangannya sering ditemukan dan membuat gelombang AC tidak memiliki bentuk yang murni. Ada lima jenis utama distorsi bentuk gelombang yang ditemukan diantaranya adalah DC offset, harmonisa, interharmonik, notching, dan derau listrik (Fuchs & Masoum, 2008).


Harmonisa adalah gejala terdistorsinya gelombang sinusoidal arus maupun tegangan pada sistem tenaga listrik (Koerniawan & Hasanah, 2019). Distorsi gelombang arus dan tegangan ini disebabkan adanya penggabungan antara gelombang fundamental dengan harmonisa yang menghasilkan gelombang nonsinusoidal periodik. Bentuk gelombang nonsinusoidal periodik ini dapat didekomposisi kembali dengan menggunakan deret Fourier sehingga menghasilkan jumlah komponen fundamental dan harmonik. Sedangkan komponen-komponen dalam deret Fourier yang bukan merupakan kelipatan integral dari frekuensi daya disebut harmonik noninteger (J. C. Das, 2015).

Fenomena yang paling umum dari harmonisa adalah bentuk gelombang arus dan tegangan terdistorsi, menciptakan resonansi, meningkatkan rugi-rugi daya, dan mengurangi masa pemanfaatan peralatan listrik (J. C. Das, 2015). Harmonisa dalam sistem tenaga muncul karena adanya operasi yang bervariasi, misalnya, feroresonansi, saturasi magnetik, resonansi subsinkron, dan beban nonlinier atau

saklar elektronik (J. C. Das, 2015). Perangkat penghasil harmonik nonlinier dapat dimodelkan secara umum sebagai sumber arus yang menyuntikkan arus harmonik ke dalam sistem tenaga (Sarma & Vedam, 2008). Bila dibagi berdasarkan pengguna listrik maka sumber harmonisa dalam sistem tenaga terbagi dalam dua bagian yaitu beban non-linier industri dan beban perumahan. Beban nonlinier industri meliputi peralatan elektronika daya, misalnya, penggerak (drives), penyearah, inverter, atau beban yang menghasilkan busur listrik (electric arcs), misalnya, tungku busur (arc furnace), mesin las, dan penerangan. Sedangkan beban perumahan meliputi catu daya mode saklar seperti televisi, komputer, dan lampu neon dan lampu hemat energi (Fuchs & Masoum, 2008).

Distorsi gelombang baik itu arus dan tegangan karena adanya harmonisa dapat menyebabkan kerugian, diantaranya masalah kualitas daya seperti penurunan dan pembengkakan tegangan, transien, undervoltages dan overvoltages, variasi frekuensi, kesalahan pengoperasian perangkat kontrol, kerugian tambahan pada kapasitor, transformator, dan motor, gangguan telepon yaitu noise pada salurannya, dan menyebabkan frekuensi resonansi paralel dan seri (karena kapasitor koreksi faktor daya dan kapasitansi kabel), menghasilkan penguatan tegangan bahkan di lokasi yang jauh dari beban distorsi (Fuchs & Masoum, 2008).

Kasus yang paling umum dalam studi harmonisa adalah bentuk gelombang terdistorsi periodik yang memiliki deret fourier dengan frekuensi dasar sama dengan frekuensi sistem tenaga. Bentuk gelombang pada Gambar 2.1 disintesis dari harmonisa yang ditunjukkan pada Tabel 2. 1. Gambar 2.1 simetris terhadap sumbu x dan dapat dijelaskan dengan Persamaan 2.1.

Gambar 2.1 Bentuk Gelombang Terdistorsi Harmonisa

Tabel 2. 1 Kandungan Harmonisa Pada Gambar 2.1

Orde (h)	Persen (%)
5	17
7	12
11	11
13	5
17	2.8
19	1.5
23	0.5

$$I = \sin(\omega t - 30^{\circ}) + 0.17\sin(5\omega t + 174^{\circ}) + 0.12\sin(7\omega t + 101^{\circ}) + \cdots (2.1)$$

Bentuk gelombang pada Gambar 2.1 biasanya dari konverter sumber arus enam pulsa. Harmonisa terbatas pada orde 23 meskipun harmonisa pada orde yang lebih tinggi akan ada namun dengan amplitudo yang lebih rendah. Ini adalah situasi yang paling umum dalam praktik, dan bentuk gelombang yang terdistorsi dapat diuraikan menjadi sejumlah harmonisa.

Dalam sistem seimbang tiga fasa di bawah kondisi nonsinusoidal, tegangan atau arus harmonisa orde-h dapat dinyatakan sebagai berikut,

$$Vah = \sum_{h \neq 1} V_h \left(h\omega_0 t - \theta_h \right) \tag{2.2}$$

$$Vbh = \sum_{h \neq 1} V_h \left(h\omega_0 t - \left(\frac{h\pi}{3}\right) \theta_h \right) \tag{2.3}$$

$$Vch = \sum_{h \neq 1} V_h \left(h\omega_0 t - \left(\frac{2h\pi}{3}\right) \theta_h \right) \tag{2.4}$$

Keterangan:

Vah = Tegangan harmonisa total fasa a (V)

Vbh = Tegangan harmonisa total fasa b (V)

Vch = Tegangan harmonisa total fasa c (V)

Berdasarkan persamaan 2.2-2.4 dan rotasi berlawanan dengan arah jarum jam dari fasor fundamental, kita dapat menulis

$$V_{a} = V_{1} \sin \omega t + V_{2} \sin 2\omega t + V_{3} \sin 3\omega t + V_{4} \sin 4\omega t + V_{5} \sin 5\omega t + \cdots (2.5)$$

$$V_{b} = V_{1} \sin(\omega t - 120^{\circ}) + V_{2} \sin(2\omega t - 240^{\circ}) + V_{3} \sin(3\omega t - 360^{\circ}) + V_{4} \sin(4\omega t - 480^{\circ}) + V_{5} \sin(5\omega t - 600^{\circ}) + \cdots$$

$$V_{b} = V_{1} \sin(\omega t - 120^{\circ}) + V_{2} \sin(2\omega t + 120^{\circ}) + V_{3} \sin 3\omega t + V_{4} \sin(4\omega t - 120^{\circ}) + V_{5} \sin(5\omega t + 120^{\circ}) + \cdots$$

$$V_{c} = V_{1} \sin(\omega t + 120^{\circ}) + V_{2} \sin(2\omega t + 240^{\circ}) + V_{3} \sin(3\omega t + 360^{\circ}) + V_{4} \sin(4\omega t + 480^{\circ}) + V_{5} \sin(5\omega t + 600^{\circ}) + \cdots$$

$$V_{c} = V_{1} \sin(\omega t + 120^{\circ}) + V_{2} \sin(2\omega t - 120^{\circ}) + V_{3} \sin 3\omega t + V_{4} \sin(4\omega t + 120^{\circ}) + V_{5} \sin(5\omega t - 120^{\circ}) + \cdots$$

$$(2.7)$$

Keterangan:

Va = Total tegangan fasa a (V)

Vb = Total tegangan fasa b (V)

Vc = Total tegangan fasa c (V)

Dalam kondisi seimbang, harmonisa ke-h (frekuensi harmonisa = h dikali frekuensi dasar) fase b tertinggal h kali 120° di belakang harmonisa yang sama di fase a. Harmonisa ke-h fase c tertinggal h kali 240° di belakang harmonisa yang sama di fase a. Dalam kasus harmonisa kelipatan tiga, pergeseran sudut fasa tiga kali 120° atau tiga kali 240° menghasilkan vektor kofasial (J. C. Das, 2015).

Tabel 2.2 Orde Harmonisa dan Rotasi

Orde Harmonisa	Forward	Reverse
Fundamental	X	
2		X
4	X	
5		X
5 7	X	
8		X
10	X	
11		X
13	X	
14		X
16	X	
17		X
19	X	
20		X
22	X	
23		X
25	X	
26		X
28	X	
29		X
31	X	

Tabel 2. *I* menunjukkan urutan harmonisa dan polanya dengan jelas yaitu positif-negatif-nol. Kita dapat menuliskannya sebagai berikut,

- a. Harmonisa orde 3h + 1 memiliki urutan/barisan positif,
- b. Harmonisa orde 3h + 2 memiliki urutan/barisan negatif,
- c. Harmonisa orde 3h memiliki urutan/barisan nol.

Semua harmonisa kelipatan tiga yang dihasilkan oleh beban nonlinier adalah fasor urutan nol. Ini menambahkan di netral. Dalam sistem tenaga tiga fasa hubungan Y, dengan beban fase tunggal seimbang sempurna antara fasa dan netral, semua harmonisa urutan positif dan negatif akan saling membatalkan dan menyisakan harmonisa urutan nol. Dalam sistem tenaga tiga fasa tidak seimbang, melayani beban fasa tunggal, netral membawa urutan nol dan ketidakseimbangan sisa arus urutan positif dan negatif (J. C. Das, 2015).

2.1.1 Faktor Harmonisa

Faktor harmonisa atau DF (*Distortion Factor*) adalah rasio akar rata-rata kuadrat (*root mean square*) kandungan harmonisa dengan nilai akar rata-rata kuadrat fundamental, yang dinyatakan sebagai persentase dari fundamental,

$$DF = \sqrt{\frac{\sum Kuadrat \ amplitudo \ semua \ harmonisa}{Kuadrat \ amplitude \ fundamental}} \ x \ 100\%$$
 (2.7)

Total harmonic distortion (THD) adalah yang paling sering digunakan sebagai index, yang mana penggunaanya sama seperti DF (J. C. Das, 2015).

2.1.2 Persamaan untuk Indeks Harmonisa Umum

Kita dapat menulis persamaan berikut,

Tegangan RMS dengan adanya harmonik dapat ditulis sebagai:

$$V_{rms} = \sqrt{\sum_{h=1}^{h=\infty} V_{h,rms}^{2}}$$
 (2.8)

Arus RMS dengan adanya harmonik dapat ditulis sebagai:

$$I_{rms} = \sqrt{\sum_{h=1}^{h=\infty} I_{h,rms}^{2}}$$
 (2.9)

Faktor distorsi total untuk tegangan adalah

$$THD_{v} = \frac{\sqrt{\sum_{h=2}^{h=\infty} V_{h,rms}^{2}}}{V_{f,rms}}$$
(2.10)

dimana $V_{\text{f,rms}}$ adalah tegangan frekuensi dasar. Ini dapat ditulis sebagai

$$THD_{v} = \sqrt{\left(\frac{V_{rms}}{V_{f,rms}}\right)^{2} - 1} \tag{2.11}$$

$$V_{rms} = V_{f,rms} \sqrt{1 + THD_v^2} \tag{2.12}$$

Demikian pula,

$$THD_{I} = \frac{\sqrt{\sum_{h=2}^{h=\infty} I_{h,rms}^{2}}}{I_{f,rms}} = \sqrt{\left(\frac{I_{rms}}{I_{f,rms}}\right)^{2}} - 1$$
 (2.13)

$$I_{rms} = I_{f,rms} \sqrt{1 + THD_I^2}$$

$$\tag{2.14}$$

dimana I_{f,rms} adalah arus frekuensi dasar.

Total Demand Distortion (TDD) didefinisikan sebagai,

$$TDD = \frac{\sqrt{\sum_{h=2}^{h=\infty} I_h^2}}{I_I}$$
 (2.15)

dimana I_L adalah arus permintaan beban.

Partial Weighted Harmonic Distortion (PWHD) arus didefinisikan sebagai,

$$PWHD_{I} = \frac{\sqrt{\sum_{h=14}^{h=40} h I_{h}^{2}}}{I_{f,rms}}$$
(2.16)

Ekspresi serupa berlaku untuk tegangan. PWHD mengevaluasi pengaruh harmonisa arus atau tegangan pada orde yang lebih tinggi. Parameter penjumlahan dihitung dengan komponen arus harmonisa tunggal I_h (J. C. Das, 2015).

2.1.3 Faktor Daya, Faktor Distorsi dan Faktor Daya Total

Untuk tegangan dan arus Sinusoidal, faktor daya didefinisikan sebagai kW/kVA dan sudut faktor daya ϕ adalah

$$\varphi = \cos^{-1} \frac{kW}{kVA} = \tan^{-1} \frac{kVAR}{kW}$$
 (2.17)

Faktor daya dengan adanya harmonisa terdiri dari dari dua komponen, perpindahan (*displacement*) dan distorsi. Pengaruh keduanya digabungkan dalam faktor daya total. Komponen perpindahan adalah rasio daya aktif gelombang fundamental dalam watt dengan daya nyata gelombang fundamental dalam voltampere. Ini adalah faktor daya seperti yang terlihat oleh watt-jam meter dan varjam meter. Komponen distorsi adalah bagian yang berhubungan dengan tegangan dan arus harmonisa (J. C. Das, 2015).

$$PF_t = PF_f \times PF_{distortion} \tag{2.18}$$

Keterangan:

 PF_t = Faktor daya total

 PF_f = Faktor daya fundamental

 $PF_{distortion}$ = Faktor daya distorsi harmonisa

Pada frekuensi dasar faktor daya perpindahan akan sama dengan faktor daya total, karena faktor daya perpindahan tidak termasuk kVA karena harmonisa, sedangkan faktor daya total tidak termasuk itu. Untuk beban pembangkit

harmonisa, faktor daya total akan selalu lebih kecil dari faktor daya perpindahan (J. C. Das, 2015).

Dalam kasus tegangan dan arus Sinusoidal, hubungan berikut berlaku

$$S^2 = P^2 + Q^2 (2.19)$$

dimana P adalah daya aktif, Q adalah volt-ampere reaktif, dan S adalah volt-ampere. Hubungan ini telah banyak dieksplorasi dalam program aliran beban,

$$S = V_f I_f, Q = V_f I_f \sin(\theta_f - \delta_f), P = V_f I_f \cos(\theta_f - \delta_f),$$

$$PF = \frac{P}{S}$$
(2.20)

Dimana f yang menjadi tika bawah sebagai penanda fundemental dan $(\theta_f - \delta_f)$ adalah sudut fasa antara tegangan dasar dengan arus dasar.

Dalam kasus beban nonlinier atau ketika sumber memiliki bentuk gelombang nonsinusoidal, daya aktif P dapat didefinisikan sebagai,

$$P = \sum_{h=1}^{h=\infty} V_h I_h \cos(\theta_h - \delta_h)$$
 (2.21)

O dapat ditulis sebagai,

$$Q = \sum_{h=1}^{h=\infty} V_h I_h \sin(\theta_h - \delta_h)$$
 (2.22)

Vh dan Ih berada dalam nilai rms, dan daya semu dapat didefinisikan sebagai,

$$S = \sqrt{P^2 + Q^2 + D^2} \tag{2.23}$$

dimana h yang menjadi tika bawah sebagai penanda harmonik dan D adalah daya distorsi. Pertimbangkan D^2 hingga harmonisa ketiga,

$$D^{2} = (V_{0}^{2} + V_{1}^{2} + V_{2}^{2} + V_{3}^{2})(I_{0}^{2} + I_{1}^{2} + I_{2}^{2} + I_{3}^{2})$$

$$- (V_{0}I_{0} + V_{1}I_{1}\cos\theta_{1} + V_{2}I_{2}\cos\theta_{2} + V_{3}I_{3}\cos\theta_{3})^{2}$$

$$- (V_{1}I_{1}\sin\theta_{1} + V_{2}I_{2}\sin\theta_{2} + V_{3}I_{3}\sin\theta_{3})^{2}$$
(2.24)

Ekspresi faktor daya distorsi dapat diperoleh dari faktor distorsi harmonisa arus dan tegangan. Dari definisi faktor-faktor tersebut, tegangan dan arus harmonisa rms dapat ditulis sebagai,

$$V_{rms(h)} = V_f \sqrt{1 + \left(\frac{THD_v}{100}\right)^2}$$
 (2.25)

$$I_{rms(h)} = I_f \sqrt{1 + \left(\frac{THD_I}{100}\right)^2}$$
 (2.26)

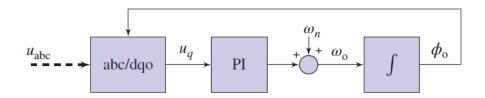
Oleh karena itu, faktor daya totalnya adalah

$$PF_{tot} = \frac{P}{V_f I_f \sqrt{1 + \left(\frac{THD_v}{100}\right)^2} \sqrt{1 + \left(\frac{THD_I}{100}\right)^2}}$$
(2.27)

Mengabaikan daya yang disumbangkan oleh harmonisa dan juga distorsi tegangan, karena umumnya kecil yaitu,

$$THD_v \cong 0 \tag{2.28}$$

$$PF_{tot} = \cos(\theta_f - \delta_f) \cdot \frac{1}{\sqrt{1 + \left(\frac{THD_I}{100}\right)^2}}$$


$$= PF_{displacement} PF_{distortion}$$
(2.29)

Faktor daya total adalah produk dari faktor daya perpindahan (yang sama dengan faktor daya dasar) dan dikalikan dengan faktor daya distorsi seperti yang telah didefinisikan sebelumnya.

2.2 Synchronous Reference Frame Phase-Locked Loop (SRF-PLL)

Synchronous Reference Frame Phase-Locked Loop (SRF-PLL) merupakan konsep yang paling terkenal dan banyak digunakan secara umum dalam sistem tenaga. Adapun panggilan lain seperti dqz-PLL atau dq0-PLL (berasal dari kata direct, quadratur dan zero) atau hanya DQPLL dan QPLL. Metode ini memiliki struktur yang relatif sederhana yang menawarkan kemudahan penyetelan parameter dan fitur yang kuat untuk implementasi digital (Karimi-Ghartema, 2014).

2.2.1 Struktur dari SRF-PLL

Gambar 2.2 SRF-PLL Tiga Fasa.

Struktural blok diagram dari SRF-PLL dapat dilihat pada Gambar 2.2. Sedangkan transformasi Park didefinisikan dengan $u_{dq0}=Pu_{abc}$ dimana

$$P = \frac{2}{3} \begin{pmatrix} \sin \phi_0 & \sin \left(\phi_0 - \frac{2\pi}{3}\right) & \sin \left(\phi_0 + \frac{2\pi}{3}\right) \\ \cos \phi_0 & \cos \left(\phi_0 - \frac{2\pi}{3}\right) & \cos \left(\phi_0 + \frac{2\pi}{3}\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
(2.30)

dengan satu set sinyal input seimbang tiga fase,

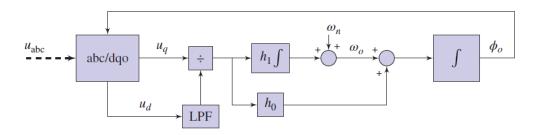
$$u_{abc}^{T} = \left(U\sin\phi_i, U\sin\left(\phi_i - \frac{2\pi}{3}\right), U\sin\left(\phi_i + \frac{2\pi}{3}\right)\right) \tag{2.31}$$

sehingga ditransformasikan menjadi satu set sinyal berikut,

$$u_{dq0}^{T} = (U\cos(\phi_i - \phi_0) \ U\sin(\phi_i - \phi_0), 0)$$
 (2.32)

Keterangan:

 \emptyset_i = sudut fasa input


 \emptyset_o = sudut fasa output

 $u_{abc} = \text{sinyal tiga fasa}$

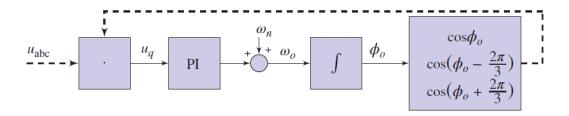
 $u_{dq0} = \text{sinyal dq}$

Dengan asumsi bahwa frekuensi keluaran sama dengan frekuensi masukan, u_{dq0} konstan tanpa osilasi frekuensi ganda. Dengan mengatur u_q ke 0, SRF-PLL mengatur \emptyset_0 ke \emptyset_i dan tidak akan ada riak dalam loop. Dengan mengatur u_q ke 0, u_d diatur ke U (Karimi-Ghartema, 2014).

2.2.2 Model Dan Desain Linear

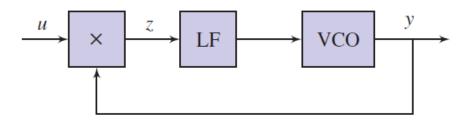
Gambar 2.3 SRF-PLL tiga fase dengan normalisasi magnitudo.

Berikut ini merupakan persamaan karakteristik loop terlinearisasi,


$$1 + U\frac{H(s)}{s} = 0 \to s^2 + h_0 U s + h_1 U = 0$$
(2.33)

dimana $H(s) = h_0 \frac{h_1}{s}$ adalah *transfer function* PI. Dari analisis linear ini dapat kita simpulkan :

a. Model SRF-PLL linear adalah loop tipe dua yang memungkinkan *tracking* fungsi *ramp* (dalam sudut fasa) dengan *zero steady state error*. Ini berarti variasi step frekuensi dilacak oleh loop tanpa (atau hanya sedikit) *steady state error* (Karimi-Ghartema, 2014).

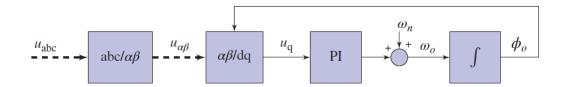

- Performa loop tergantung pada magnitudo sinyal input. Nilai parameter $controlling\ h_0$ dan h_1 bisa didapatkan berdasarkan nilai nominal magnitudo sinyal input. Ini memungkinkan parameter tersebut secara adaptif berdasarkan nilai perkiraan besarnya sinyal input. Perkiraan magnitudo sinyal input bisa didapatkan menggunakan $\widehat{U} = \sqrt{u_d^2 u_q^2}$ atau hanya menggunakan $\widehat{U} = U_d$. LPF dapat digunakan untuk memfilter sinyal dan kemudian pembagian sinyal ini akan membuat loop independen dari magnitudonya. Seperti struktur yang ditunjukkan pada Gambar 2.3.
- c. Nilai h_0 dan h_1 didapatkan berdasarkan lokasi kutub *close loop* yang diinginkan. Sistem yang nyata mungkin tidak berperilaku sama persis dengan sistem linear orde kedua standar karena nonlinearitas dan PI nol. Bagaimanapun, desain *trade-off* dasar adalah yang harus dibuat antara kecepatan respon dan akurasi respon dalam kondisi *steady state*. Untuk sinyal input yang memiliki noise atau terdistorsi, penguatan atau *gain* perlu dibuat lebih kecil untuk membuat respon lebih halus dengan mengorbankan respon transien yang lebih lambat.
- d. Untuk meningkatkan akurasi estimasi frekuensi untuk sinyal input yang memiliki noise atau terdistorsi, sebaiknya tap out frekuensi dari titik yang mengecualikan jalur proporsional dari pengontrol proportional-integrating (PI). Strategi ini ditunjukkan pada Gambar 2.3.

2.2.3 Representasi Alternatif SRF-PLL

Gambar 2.4 Representasi Alternatif SRF-PLL.

Gambar 2.4 menunjukan sebuah representasi alternatif dari SRF-PLL pada Gambar 2.2 ketika transformasi digunakan untuk menghitung u_q . Ini sangat mudah untuk mengamati persamaan diagram pada Gambar 2.4 dengan Gambar 2.4. Hal yang menarik dari diagram ini kemiripan secara lengkap dengan struktur PLL fase tunggal standar seperti pada Gambar 2.5.

Gambar 2.5 Struktur Standar PLL


Perkalian fasa tunggal pada Gambar 2.5 digantikan dengan perkalian dot tiga fasa dalam Gambar 2.4. *Phase detector* (PD) yang merupakan perkalian dalam PLL standar, diperluas ke perkalian dot dua buah vektor yang didefinisikan sebagai $v_1 \cdot v_2 = v_{1a}v_{2a} + v_{1b}v_{2b} + v_{1c}v_{2c}$. *Voltage Controlled Oscillator* (VCO) dalam PLL standar pada Gambar 2.5 ditingkatkan menjadi VCO tiga fasa pada Gambar 2.4 yang membangkitkan tiga sinusoidal pada frekuensi tunggal dan pergeseran fasa 120°.

2.2.4 Operasi SRF-PLL pada Stationary Frame

Sinyal stationary frame $u_{\alpha\beta}$ didefinisikan sebagai,

$$u_{\alpha\beta} = \frac{2}{3} \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} u_{abc}$$
 (2.34)

Sebenarnya struktur pada Gambar 2.2 dan Gambar 2.4 berbeda dalam faktor $\frac{2}{3}$ pada PI gain.

Gambar 2.6 SRF-PLL Tigas Fasa

Untuk sinusoidal murni dan sinyal input seimbang $u_{abc}^T = \left(U \sin \phi_i, U \sin \left(\phi_i - \frac{2\pi}{3}\right), U \sin \left(\phi_i + \frac{2\pi}{3}\right)\right)$ menghasilkan $u_{\alpha\beta}^T = \left(U \sin \phi_i, -U \cos \phi_i\right)$. Dengan kata lain, sinyal komponen α sama dengan sinyal fasa a dan sinyal komponen β bergeser 90° dari sinyal komponen α . Sekarang, sinyal $dq \ u_{dq0}^T = \left(U \cos (\phi_i - \phi_0) \ U \sin (\phi_i - \phi_0)\right)$ dapat dihitung dari sinyal $\alpha\beta$ menggunakan matriks rotasi sebagai berikut :

$$u_{dq} = \begin{pmatrix} \sin \phi_o & -\cos \phi_o \\ \cos \phi_o & \sin \phi_o \end{pmatrix} u_{\alpha\beta} \tag{2.35}$$

Struktur SRF-PLL pada $\alpha\beta$ stationary frame ditunjukkan pada Gambar 2.6.

2.2.5 Dampak Ketidakseimbangan, DC dan Harmonisa di SRF-PLL

Himpunan sinyal sinusoidal tidak seimbang dapat direpresentasikan sebagai penjumlahan dari komponen *positive-sequence*, *negative-sequence*, dan *zero-sequence* $u = u^p + u^n + u^z$ (Karimi-Ghartema, 2014). Komponen tersebut disebut sebagai urutan atau *sequence* komponen simetris dan dapat dituliskan sebagai berikut,

$$u_{abc}^{p} = \left(U_{p}\sin(\emptyset_{p}), U_{p}\sin(\emptyset_{p} - \frac{2\pi}{3}), U_{p}\sin(\emptyset_{p} + \frac{2\pi}{3})\right)^{T}$$
(2.36)

$$u_{abc}^{n} = \left(U_n \sin(\emptyset_n), U_n \sin\left(\emptyset_n + \frac{2\pi}{3}\right), U_n \sin\left(\emptyset_n - \frac{2\pi}{3}\right)\right)^{T}$$
(2.37)

$$u_{abc}^{z} = (U_z \sin(\emptyset_z), U_z \sin(\emptyset_z), U_z \sin(\emptyset_z))^{T}$$
(2.38)

Keterangan:

 u_{abc}^{p} = sinyal tiga fasa urutan positif

 u_{abc}^{n} = sinyal tiga fasa urutan negatif

 $u_{abc}^{z} = \text{sinyal tiga fasa urutan nol}$

 U_p = nilai amplitudo tegangan / arus urutan positif

 U_n = nilai amplitudo tegangan / arus urutan negatif

 U_z = nilai amplitudo tegangan / arus urutan nol

Sangat mudah untuk memverifikasi bahwa urutan nol atau zero-sequence dari sinyal input ke SRF-PLL tidak merubah u_q karena simetrinya. Selanjutnya SRF-PLL tidak sensitif terhadap komponen urutan nol. Disisi lain adanya urutan negatif (negative sequence) menghasilkan komponen baru pada u_q sama dengan $U_n \sin(\phi_n + \phi_o)$ (Karimi-Ghartema, 2014). Dengan kata lain, osilasi frekuensi ganda ada di loop ketika sinyal input tidak seimbang. Riak seperti itu muncul dalam frekuensi dan sudut fase yang diperkirakan.

Jika sinyal input memiliki komponen arus searah atau DC (d_a,d_b,d_c) , kemudian hal ini membangkitkan komponen pada u_q yang sama dengan $\frac{2}{3} \left(d_a \cos \phi_o + d_b \cos \left(\phi_o - \frac{2\pi}{3} \right) + d_c \cos \left(\phi_o + \frac{2\pi}{3} \right) \right)$. Komponen ini bernilai nol jika komponen DC simetris. Jika tidak itu menyebabkan osilasi dalam loop yang frekuensinya sama dengan frekuensi sinyal input.

Cara perhitungan yang sama mengarah pada kesimpulan bahwa harmonisa orde n pada sinyal input menghasilkan dua komponen baru di u_q . Kedua komponen ini menunjukan osilasi pada n-1 dan n+1 harmonisa. Tingkat distorsi menurun untuk harmonisa orde tinggi karena karakteristik *low-pass* dari *loop* (Karimi-Ghartema, 2014).

Dampak harmonisa frekuensi tinggi, misalnya yang lebih besar dari harmonisa ke-10, dapat dikurangi secara signifikan dengan menggunakan LPF dalam *loop*. LPF semacam itu dapat dirancang dengan baik untuk menghindari kehilangan *bandwidth* (atau kecepatan) *loop* yang berlebihan. Untuk harmonisa frekuensi rendah, ketidakseimbangan, dan komponen DC, bagaimanapun, LPF seperti itu tidak dapat benar-benar membantu kecuali kecepatan respons bukanlah faktor penting (dan dapat dikorbankan) untuk aplikasi tertentu (Karimi-Ghartema, 2014).

2.3 Fast Fourier Transform (FFT)

Sebagaian besar instrumen yang digunakan untuk analisis harmonisa dalam mengumpulkan data berasal dari *potensial transformator* (PT) dan *current transformator* (CT). Data ini kemudian dianalisis menggunakan FFT. Metode ini memiliki keunggulan karena lebih sedikit upaya komputasi yang diperlukan dibandingkan dengan metode lainnya. Metode FFT pertama kali diperkenalkan oleh Cooley dan Tukey pada tahun 1965 (Sarma & Vedam, 2008).

2.3.1 Deret Fourier

Jika $f(\theta)$ adalah fungsi periodik dari θ maka bentuk trigonometri dari deret fourier adalah

$$f(\theta) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\theta) + b_n \sin(n\theta)$$
(2.39)

dengan

$$a_0 = (1/2\pi) \int_{2\pi}^{2\pi} f(\theta) d\theta$$

$$a_n = (1/\pi) \int_{0}^{2\pi} f(\theta) \cos(n\theta) d\theta, \text{ (kecuali } n = 0)$$

$$(2.40)$$

$$a_n = (1/\pi) \int_0^{2\pi} f(\theta) \cos(n\theta) d\theta , \text{ (kecuali } n = 0)$$
 (2.41)

$$b_n = (1/\pi) \int_0^{2\pi} f(\theta) \sin(n\theta) d\theta$$
 (2.42)

Pada persamaan 2.40 - 2.42 limit dari integral dapat diubah dari 0 ke 2π menjadi $-\pi$ ke π karena keduanya sama sama merepresentasikan satu periode penuh.

Selanjutnya untuk mengetahui magnitudo A_n dan sudut fasa \emptyset_n dari harmonisa ke-n (tegangan atau arus) dapat kita peroleh dari persamaan berikut :

$$A_n \angle \emptyset_n = a_n + jb_n \tag{2.43}$$

dimana

$$A_n = \sqrt{(a_n^2 + b_n^2)} \tag{2.44}$$

$$\emptyset_n = \tan^{-1}(b_n/a_n) \tag{2.45}$$

Bentuk eksponensial dari deret fourier dapat diperoleh dari identitas trigonometri,

$$\cos(n\theta) = \frac{\left(e^{jn\theta} + e^{-jn\theta}\right)}{2} \tag{2.46}$$

$$\sin(n\theta) = \frac{\left(e^{jn\theta} - e^{-jn\theta}\right)}{2i} \tag{2.47}$$

Sehingga jika disubstitusikan ke persamaan 2.39 menjadi,

$$f(\theta) = a_0 + \left(\frac{1}{2}\right) \sum_{n=1}^{\infty} (a_n - jb_n) e^{jn\theta} + \left(\frac{1}{2}\right) \sum_{n=1}^{\infty} (a_n + jb_n) e^{-jn\theta}$$
 (2.47) dimana

$$a_{-n} = a_n \operatorname{karena} \cos(n\theta) = \cos(-n\theta)$$
 (2.48)

$$b_{-n} = -b_n \operatorname{karena} \sin(n\theta) = -\sin(-n\theta)$$
 (2.49)

dan dapat dituliskan

$$\sum_{n=1}^{\infty} a_n e^{-jn\theta} = \sum_{n=-1}^{-\infty} a_n e^{jn\theta}$$
(2.50)

$$\sum_{n=1}^{\infty} jb_n e^{-jn\theta} = \sum_{n=-1}^{\infty} jb_n e^{jn\theta}$$
(2.51)

Substitusikan persamaan 2.50 dan 2.51 pada persamaan 2.47,

$$f(\theta) = a_0 + \left(\frac{1}{2}\right) \sum_{n = -\infty}^{\infty} (a_n - jb_n) e^{jn\theta}, \text{ (kecuali saat n = 0)}$$
 (2.52)

dan kecuali saat n = -0

$$f(\theta) = \sum_{n = -\infty}^{\infty} C_n e^{jn\theta}$$
 (2.53)

dimana

$$C_n = \left(\frac{1}{2}\right)(a_n - jb_n), n = \pm 1, \pm 2 +$$
 (2.54)

dan

$$C_n = C_{-n}$$

$$C_0 = a_0$$

Nilai c_n juga dapat diperoleh dengan integrasi kompleks,

$$c_n = (1/\pi) \int_{-\pi}^{\pi} f(\theta) e^{-jn\theta} d\theta$$
 (2.55)

$$c_0 = (1/2\pi) \int_{-\pi}^{\pi} f(\theta) d\theta \tag{2.56}$$

Persamaan deret fourier dalam bentuk eksponensial seperti pada persamaan 2.53 dan koefisien kompleks dalam persamaan 2.55 dan 2.56 banyak digunakan dalam analisis (Sarma & Vedam, 2008).

2.3.2 Sifat Simetris dari Bentuk Gelombang

Jika $f(\theta) = -f(-\theta)$ bentuk gelombang memiliki simetri ganjil dan hanya akan berisi fungsi sinus. Jika $f(\theta) = f(-\theta)$ bentuk gelombang memiliki simetri genap dan hanya akan berisi fungsi kosinus (Sarma & Vedam, 2008).

Sebuah fungsi $f(\theta)$ memiliki simetri setengah gelombang jika $f(\theta) = -f(\theta + \pi)$. Sebuah fungsi yang memiliki bentuk gelombang selama periode dari $(\theta + \pi)$ hingga $(\theta + 2\pi)$ adalah bentuk negatif dari bentuk gelombang selama periode θ hingga $(\theta + \pi)$. Bentuk gelombang yang memiliki simetri setengah gelombang hanya dapat mengandung harmonisa orde ganjil (Sarma & Vedam, 2008).

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$
 (2.57)

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df$$
 (2.58)

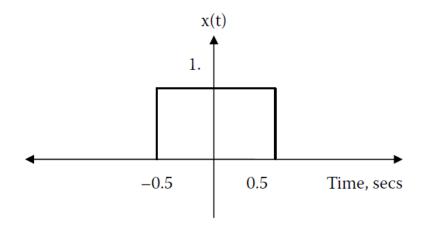
$$\int_{-\infty}^{\infty} x^2(t)dt = \int_{-\infty}^{\infty} |X(f)|^2 df$$
 (2.59)

2.3.3 Fungsi Sinc

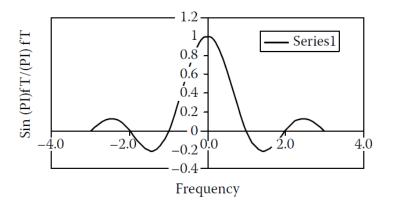
Fungsi rectangular 2.39 dapat difenisikan sebagai, x(t) = A, untuk $|t| \le \frac{T}{2}$ dan 0 untuk $|t| > \frac{T}{2}$. Artinya, fungsi kontinu pada semua t tetapi 0 di luar batas $\left(-\frac{T}{2}, \frac{T}{2}\right)$. Transformasi fourier adalah

$$X(f) = \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t)e^{-j2\pi ft}dt$$

$$= \int_{-\frac{T}{2}}^{\frac{T}{2}} Ae^{-j2\pi ft}dt$$


$$= -\left(\frac{A}{\pi f 2j}\right) \left[e^{-j\pi ft} - e^{j\pi ft}\right]$$
(2.60)

Menggunakan identitas


$$\sin(\theta) = \frac{\left(e^{j\theta} - e^{-j\theta}\right)}{2i} \tag{2.61}$$

maka dihasilkan persamaan berikut untuk transformasi fourier:

$$X(f) = \left(\frac{A}{\pi f}\right)\sin(\pi f T) = AT \left[\frac{\sin(\pi f t)}{\pi f t}\right]$$
 (2.62)

Gambar 2.7 Fungsi Rectangular

Gambar 2.8 Fungsi Sinc

Fungsi sinc ditampilkan pada Gambar 2.8. Meskipun fungsinya kontinyu namun tetap memiliki nilai nol pada titik-titik $f=\frac{n}{T}$ untuk $n=\pm 1,\pm 2,...$, dan *sidelob* berkurang besarnya ketika $\frac{1}{T}$ meningkat.

2.3.4 Discrete Fourier Transform (DFT)

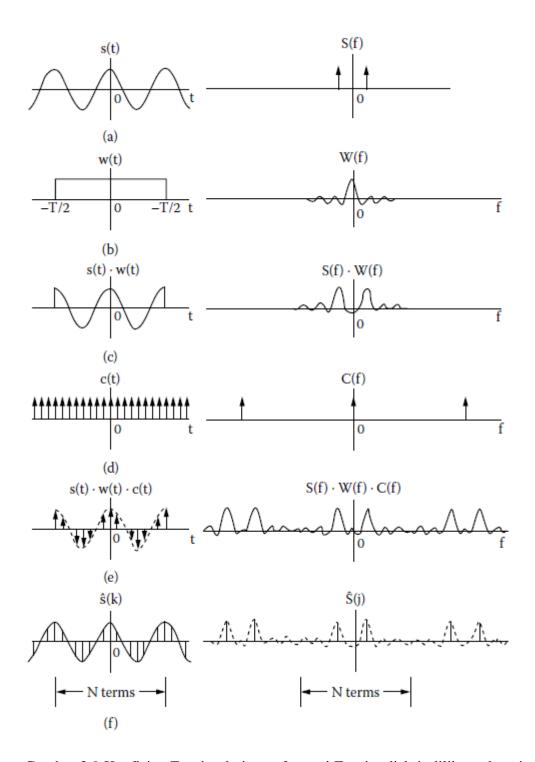
FFT merupakan penggabungan beberapaa teknik komputasi termasuk DFT didalamnya, pembahasan DFT diperlukan dalam mempelajari FFT. Dalam kebanyakan pengukuran misalnya tegangan atau arus sampel diambil pada interval waktu yang sama dan kemudian direkam. Dalam menganalisa sinyal tersebut DFT digunakan sangat luas. Sedangkan FFT merupakan prosedur yang sangat efisien dalam menghitung DFT dari deret waktu (Sarma & Vedam, 2008).

Persamaan 2.57 dan 2.58 dapat didefinisikan dalam DFT sebagai berikut,

$$X(k) = (1/N) \sum_{n=0}^{N-1} x(n)e^{-j2\pi nk/N}$$
(2.67)

$$x(n) = \sum_{n=0}^{N-1} X(k)e^{j2\pi nk/N}$$
 (2.68)

untuk n = 0,1,...(N-1) dan k = 0,1,...(N-1). Baik X(k) dan x(n) secara umum merupakan deret kompleks. Dalam beberapa situasi x(n) hanya berisi bilangan real (Sarma & Vedam, 2008).


Penjabaran DFT tidak seragam dalam beberapaa literatur. Jika X(k)=a1 $\sum_{n=0}^{N-1} x(n)e^{-j2\pi nk/N}$ dan x(n)=a2 $\sum_{n=0}^{N-1} X(k)e^{j2\pi nk/N}$ kemudian (a1)(a2)=1/N. Oleh karena itu, beberapaa penulis menggunakan a1 atau a2 untuk menjadi 1/N, sedangkan yang lain menggunakan $a1=a2=\frac{1}{\sqrt{N}}$ (Sarma & Vedam, 2008). Yang lain lagi menggunakan eksponen positif seperti pada persamaan 2.67 atau eksponen negatif seperti pada persamaan 2.68.

Ketika $e^{-2\pi j/N}$ diganti dengan W maka persamaan DFT akan sebagai berikut,

$$X(k) = (1/N) \sum_{n=0}^{N-1} x(n) W^{nk}$$
(2.69)

$$x(n) = \sum_{n=0}^{N-1} X(k)W^{-nk}$$
 (2.70)

DFT dari beberapaa sinyal, yang merupakan fungsi waktu, ditunjukkan pada Gambar 2.9.

Gambar 2.9 Koefisien Fourier dari transformasi Fourier diskrit dilihat sebagai perkiraan rusak transformasi Fourier kontinyu.

2.3.5 Decimation In Time (DIT)

Dua bentuk konvensional dari algoritma FFT dikenal sebagai *decimation in time* and *decimation in frequency*. Persamaan deret untuk koefisien deret DFT X(k) dapat dipisahkan menjadi dua deret yaitu B(r) yang berisi nomor sampel genap dan C(r) yang berisi nomor sampel ganjil. Kemudian $N=2^m$ dimana m>0 dan merupakan bilangan bulat.

$$X(k) = (1/N) \sum_{n=0}^{N-1} x(n)W^{nk}$$
(2.71)

Misalkan x(2r) dan x(2r+1) yang masing-masing mewakili nomor sampel genap dan ganjil, dalam deret waktu asli dimana r memiliki nilai $0,1,2,\ldots,\{(N/2)-1\}$. Kemudian dapat dituliskan,

$$X(k) = (1/N) \sum_{n=0}^{N-1} x(n) W^{nk}$$
(2.72)

$$= \left(\frac{1}{2}\right) \left(\frac{1}{(N/2)}\right) \sum_{r=0}^{\frac{N}{2}-1} x(2r) W^{2rk} + W^{k} \left[\left(\frac{1}{2}\right) \left(\frac{1}{(N/2)}\right) \sum_{r=0}^{\frac{N}{2}-1} x(2r+1) W^{2rk}\right]$$
(2.73)

dimana k memiliki nilai 0,1,2, ..., (N-1) dan r memiliki nilai 0,1,2, ..., $\{(N/2)-1\}$

$$X(k) = \left(\frac{1}{2}\right)B(r) + W^{k}\left(\frac{1}{2}\right)C(r)$$
(2.74)

dimana B(r) dan C(r) masing-masing adalah DFT dari sampel genap dan ganjil, masing-masing terdiri dari bilangan kompleks $\frac{N}{2}$, yaitu,

$$B(r) = \left(\frac{1}{(N/2)}\right) \sum_{r=0}^{\frac{N}{2}-1} x(2r) W^{2rk}$$

$$C(r) = \left(\frac{1}{(N/2)}\right) \sum_{r=0}^{\frac{N}{2}-1} x(2r+1)W^{2rk}$$

Karena B(r) dan C(r) adalah DFT dari $\frac{N}{2}$ sampel, mereka memenuhi sifat periodik DFT. Maka,

$$B\left(r + \frac{N}{2}\right) = B(r) \operatorname{dan} C\left(r + \frac{N}{2}\right) = C(r)$$
(2.75)

Jika kita mengetahui nilai B(r) dan C(r), semua koefisien DFT dari barisan asli dapat dihitung menggunakan persamaan 2.74 dan memberikan nilai k dari 0 hingga (N-1). Sehingga menghasilkan algoritma DIT (decimation in time) sebagai berikut :

$$W^{\left(r+\frac{N}{2}\right)} = e^{-\frac{j2\pi\left(r+\frac{N}{2}\right)}{N}} = e^{-\frac{j2\pi r}{N}}e^{j\pi} = -e^{-\frac{j2\pi r}{N}} = -W^{r}$$
(2.76)

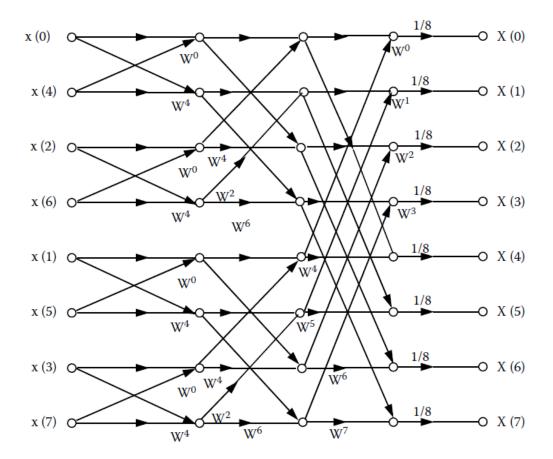
Oleh karena itu,

$$X(r) = \left(\frac{1}{2}\right)B(r) + W^r\left(\frac{1}{2}\right)C(r), 0 \le r < N/2$$
(2.77)

$$X\left(r + \frac{N}{2}\right) = \left(\frac{1}{2}\right)B(r) - W^r\left(\frac{1}{2}\right)C(r), 0 \le r < N/2$$
(2.78)

2.3.6 Decimation In Frequency (DIF)

Formulir ini ditemukan secara independen oleh Sande, dan oleh Cooley dan Stockham. Dalam algoritma ini, peran sampel waktu dan frekuensi dipertukarkan. Sampel waktu dibagi menjadi dua urutan, terdiri dari N/2 titik pertama, dan urutan kedua terdiri dari N/2 titik terakhir (Sarma & Vedam, 2008).


$$X(k) = \left(\frac{1}{N}\right) \sum_{n=0}^{N-1} x(n) W^{nk}$$

$$= \left(\frac{1}{N}\right) \sum_{n=0}^{\frac{N}{2}-1} \left[x(n) W^{nk} + x \left(n + \frac{N}{2}\right) W^{k\left(n + \frac{N}{2}\right)} \right]$$

$$= \left(\frac{1}{N}\right) \sum_{n=0}^{\frac{N}{2}-1} \left[x(n) + x \left(n + \frac{N}{2}\right) W^{kN/2} j W^{kn} \right]$$
(2.79)

Ekspansi $W^{kN/2}$ hanya dapat mengambil dua nilai, tergantung pada apakah k genap atau ganjil. Jika k genap, katakanlah 2r, di mana r adalah bilangan bulat, $W^{rN}=1$, karena $W^N=1$. Jika k ganjil dan sama dengan (2r+1), maka $W^{(2r+1)N/2}=W^{rn}\,W^{N/2}=e^{-\left(\frac{2\pi j}{N}\right)\cdot\frac{N}{2}}=e^{-\pi j}=-1$. Jika k genap, yaitu k=2r,

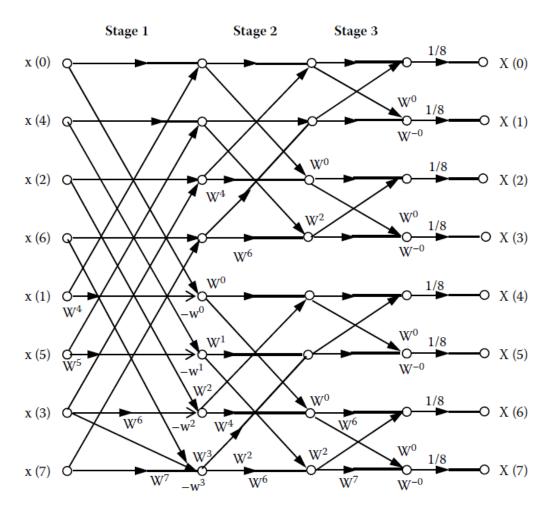
$$y(n) = x(n) + x\left(n + \frac{N}{2}\right) \tag{2.80}$$

Gambar 2.10 Diagram Alur untuk delapan point DIT FFT.

Saat k adalah ganjil, k = 2r + 1,

$$z(n) = x(n) - x(n + N/2)$$
(2.81)

Sehingga,


$$X(2r) = \left(\frac{1}{N}\right) \sum_{n=0}^{\frac{N}{2}-1} [y(n)] W^{2rn} = \left(\frac{1}{2}\right) \left(\frac{1}{\frac{N}{2}}\right) \sum_{n=0}^{\frac{N}{2}-1} [y(n)] W^{2rn}$$
 (2.82)

Ruas kanan persamaan 2.82 adalah setengah kali N/2 titik DFT dari y(n) = x(n) + x(n + N/2) karena $W^2 = exp[-2\pi j/(N/2)]$ dan urutan inputnya adalah $\{y(0), y(1), dan y(N/2 - 1)\}$.

Saat k ganjil dan k = 2r + 1,

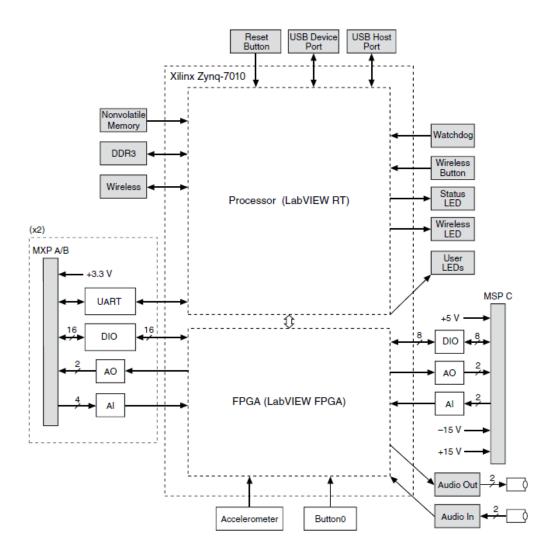
$$X(2r+1) = (1/N) \sum_{n=0}^{\frac{N}{2}-1} [Z(n)] W^{(2r+1)n} = (1/N) \sum_{n=0}^{\frac{N}{2}-1} [Z(n)W^n] W^{2rn}$$
$$= \left(\frac{1}{2}\right) \left(\frac{1}{\left(\frac{n}{2}\right)}\right) \sum_{n=0}^{\frac{N}{2}-1} [Z(n)W^n] W^{2rn}$$
(2.83)

Ruas kanan persamaan adalah setengah kali N/2 titik DFT dari $z(n)W^n$, yaitu, $[x(n) - x(n + N/2)]W^n$. Parameter W^n kadang-kadang disebut faktor *twiddle*.

Gambar 2.11 Diagram Alur untuk delapan point DIT FFT.

Seperti yang dapat dilihat pada persamaan 2.82 dan 2.83, dapat diperoleh semua koefisien N dari DFT deret asli yang memiliki suku N dari dua DFT yang

memiliki suku N/2. Oleh karena itu semua faktor mengenai pengurangan waktu komputer berlaku untuk algoritma DIF juga. Oleh karena itu kedua metode memerlukan perkalian kompleks $(N/2)\log_2 N$ dan penambahan kompleks $N\log_2 N$ untuk perhitungan DFT dari urutan titik N, ketika N memiliki pangkat dua.

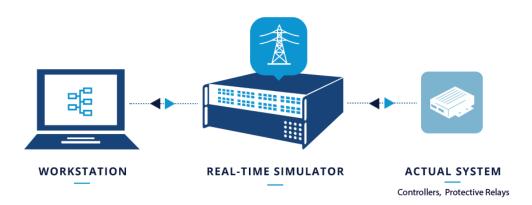

Untuk N=8, grafik alur sinyal dari salah satu versi DIF dari algoritma FFT ditunjukkan pada Gambar 2.11.

2.4 MyRio

National Instrument myRIO-1900 adalah perangkat I/O (RIO) rekonfigurasi portabel yang dapat digunakan pada penelitian ini. Platform myRIO ditargetkan untuk lingkungan akademik yang tertarik dengan perangkat IO yang sangat portabel untuk digunakan dalam proyek akademik (Rafiq et al., 2018).

Gambar 2.12 Hardware NI myRio-1900.

Gambar 2.13 Diagram Blok Hardware NI myRio-1900.


MyRIO terdiri dari modul nirkabel built-in, konektor USB, jack audio, LED, pin konektor input dan output dan akselerometer tiga sumbu. Untuk menyalakan perangkat ini dibutuhkan 6 hingga 16 VDC (Ng et al., 2019). Dengan spesifikasi lengkap sebagai berikut :

- a. Prosesor: Xilinx Z-7010 667 MHz *dual core* ARM Cortex-A9.
- b. Memori: Nonvolatile, 256 MB, DDR3 512MB, 533 MHz, 16 bits.
- c. FPGA: Xilinx Z-7010.
- d. Wireless: IEEE 802.11 b,g,n ISM 2.4 GHz 20 MHz.
- e. USB 2.0 Hi-Speed.
- f. Akselerometer 3 sumbu.
- g. Konsumsi daya maksimum : 14 W.
- h. Kondisi idle: 2.6 W.

2.5 Hardware In Loop (HIL)

Hardware In Loop merupakan sebuah metode dalam menggabungkan perangkat lunak dan perangkat keras dalam satu loop simulasi sebuah sistem. Dimana kerangka kerja dari HIL memungkinkan bagian fisik aktual dimasukan ke dalam kerangka kerja simulasi non fisik (perangkat lunak). Simulasi HIL ini membantu dalam pengembangan sistem yang rumit dan memerlukan biaya yang besar. Dengan begitu maka simulasi HIL memiliki keuntungan biaya dan resiko yang diminimalisir (Aditya et al., 2019).

Dengan HIL kita dapat merancang sebuah kontroler dari sebuah *plant* tanpa membuat *plant* nya. *Plant* disimulasikan dalam perangkat lunak dan kontroler dalam bentuk fisik dapat bekerja didalam *loop* selayaknya memiliki *plant* bentuk fisik dengan kondisi ideal.

Gambar 2.14 Diagram Blok Hardware In Loop

2.6 Penelitian Terkait

Metode *synchronous reference frame* (SRF) telah banyak digunakan dalam berbagai penelitian dengan berbagai macam pemodelan yang dipublikasikan pada sebuah jurnal. Beberapaa penelitian tersebut penulis jadikan sebagai perbandingan pada Tabel 2.3 sehingga dapat memperkuat pemahaman penulis yang menggunakan metode SRF pada penelitian ini.

Tabel 2.3 Jurnal Terkait Penelitian

No	Judul Jurnal	Nama Peneliti		Pembahasan
NO	Judui Jurnai	Nama Penenu	Tempat dan	
			Tahun	Jurnal
			Penelitian	
1	Desain Dan	Muhammad	Universitas	Penelitian ini
	Implementasi	Hanif	Diponegoro,	membuat sebuah
	Synchronous	Abdurrahman,	2018	desain untuk
	Reference Frame-	Iwan Setiawan,		pengaplikasian
	Phase Locked	dan Susatyo		SRF-PLL untuk
	Loop (SRF-PLL)	Handoko		tegangan satu fase
	Untuk Tegangan			dengan
	Satu Fase			menggunakan
	Menggunakan			mikrokontroler 16-
	DSPIC30F4011			bit dsPIC30f401
				dengan kontroler
				PI, dimana
				kontroler PI
				diharapkan akan
				membuat sistem
				memiliki respon
				yang cepat
				terhadap perubahan
				yang terjadi,
				dikarenakan tujuan
				dari kebutuhan
				PLL itu sendiri,
				sehingga akan
				didapatkan hasil
				data tegangan
				jaringan berupa,
				magnitude,
				frekuensi dan fase
				yang akan
				dibandingkan
				dengan hasil dari
				simulasi SRF-PLL
				pada Simulink
				matlab
				(Abdurrahman et
2	A Modified CDE	Md	Milwayler	al., 2018).
2	A Modified SRF-	Md.	Milwaukee,	Penelitian ini
	PLL for Phase	Rasheduzzama	WI, USA,	membahas
	and Frequency	n, Sami	2016	modifikasi SRF-
	Measurement of	Khorbotly dan		PLL untuk deteksi
	Single-Phase	Jonathan W.		fase yang lebih
	Systems	Kimball		baik dan
				pengukuran
1				frekuensi dari

No	Judul Jurnal	Nama Peneliti	Tempat dan Tahun Penelitian	Pembahasan Jurnal
3	Performance Comparison of Single-Phase SAPF Using PQ Theory and SRF Theory	Sanjan P S, N G Yamini dan Gowtham N	Belgauni, India, 2020	sistem satu fasa. PLL yang diusulkan menambahkan sedikit kerumitan pada sistem dan hemat biaya untuk diterapkan menggunakan prosesor sinyal digital (Rasheduzzaman et al., 2016). Penelitian ini membuat model beban nonlinear untuk membandingkan kinerja kinerja teknik ekstraksi berbasis teori PQ dan teori SRF untuk filter daya aktif (APF) dengan menggunakan simulink. Untuk membandingkan kinerja dinamis dan steady state dari teknik ekstraksi ini, beban induktif yang tinggi dihubungkan setelah waktu simulasi tertentu (Sanjan et al.,
4	SRF and Real Power Theory based Control of a Nine Switch Converter based UPQC	Sudheer Vinnakoti dan Venkata Reddy Kota	Pattaya, Thailand, 2017	Penelitian ini memodelkan Nine Switch Unified Power Quality Conditioner (NS-UPQC) menggunakan Synchronous

No	Judul Jurnal	Nama Peneliti	Tempat dan Tahun	Pembahasan Jurnal
			Penelitian	
				Reference Frame
				(SRF) dan Real
				Power Theory (P-
				Theory) dengan
				skema kontrol
				berbasis ekstraksi
				harmonisa. Model
				NS-UPQC dengan
				skema kontrol yang
				diusulkan
				dikembangkan
				dalam perangkat
				lunak
				Matlab/Simulink
				dan kinerjanya
				diperiksa
				dalam berbagai
				kondisi seperti
				tegangan beban
				dan arus suplai
				harmonisa, suplai
				arus tidak
				seimbang, voltage
				sag/swell.
				%THD tegangan
				dan arus juga
				dianalisis dalam
				penelitian ini
				(Vinnakoti & Kota,
				2017).
5	An Improved	Kangante	Bangalore,	Penelitian ini
	SRF-Theory	Vishal dan	India, 2018	membuat sistem
	Based Controller	Vijayaganesh	maia, 2010	photovoltaic (PV)
	Applied To Three	R		terhubung pada
	Phase Grid			grid tiga fase yang
	Interfaced PV-			menggunakan
	System For			teknik kontrol
	Power Quality			berbasis teori SRF
	Improvement			yang ditingkatkan.
	And Islanding			Sistem yang
	Detection			diusulkan terdiri
	Detection			dari PV-Module,
				DC-DC boost
				converter, voltage
				source inverter
				source inverter

No	Judul Jurnal	Nama Peneliti	Tempat dan	Pembahasan
			Tahun Penelitian	Jurnal
			Penentian	(VSI), smoothing
				induktor dan
				sumber tiga fasa
				sebagai grid. Arus
				referensi dihasilkan
				dengan
				menggunakan teori
				modified
				synchronous
				reference frame
				(SRF) untuk
				mengontrol VSI.
				Konverter boost
				DC-DC digunakan
				untuk
				mengekstraksi
				Daya Maksimum dari array PV dan
				tegangan tautan
				DC diatur dengan
				menggunakan
				pengontrol
				Proporsional
				Integral (PI)
				(Vishal, 2018).
6	Design and Test	Gabriel	Brazil, 2021	Penelitian ini
	of a SRF-PLL	Ubirajara de	,	membahas desain,
	Based Algorithm	Carvalho,		analisis, dan
	for Positive-	Gustavo		pengujian
	Sequence	Weber		eksperimental
	Synchrophasor	Denardin,		algoritma berbasis
	Measurements	Rafael Cardoso		SRF-PLL untuk
		dan Cassiano		pengukuran fasor
		Ferro Moraes		urutan positif
				sesuai dengan
				standar IEEE
				C37.118.1-2011
				dan C37.118.1a-
				2014. Pendekatan
				yang diusulkan
				terdiri dari
				algoritma tiga
				tahap, yang
				pertama adalah
				demodulasi tiga

No	Judul Jurnal	Nama Peneliti	Tempat dan	Pembahasan
			Tahun Penelitian	Jurnal
			1 chemian	fase, yang
				melepaskan urutan
				positif dari sinyal
				urutan negatif
				dalam domain
				frekuensi, serta
				menghilangkan
				urutan nol. Tahap
				kedua adalah filter
				finite impulse
				* *
				response (FIR)
				yang diterapkan untuk
				meningkatkan
				penolakan terhadap noise dan
				interferensi. Tahap
				terakhir dilakukan
				oleh synchronous reference frame
				phase-locked loop
				*
				yang menampilkan
				normalisasi
				magnitudo dan
				pengontrol
				proportional-
				integral, yang
				memperkirakan
				amplitudo, fase,
				frekuensi dan laju
				perubahan frakuansi Hasil
				frekuensi. Hasil
				eksperimen yang
				diperoleh dengan
				platform uji
				menunjukkan
				bahwa kriteria
				steady state
				terpenuhi (de
				Carvalho et al.,
	т 1	IV C D	I 1: 2017	2021).
7	Implementation	K. Sonam, P.	India, 2017	Penelitian ini
	of Single-phase	Nikhil, B.		membahas
	Modified SRF-	Sudeep, dan G.		pendekatan <i>model</i>
	PLL using Model	Atul		based development

No	Judul Jurnal	Nama Peneliti	Tempat dan	Pembahasan
			Tahun	Jurnal
			Penelitian	
	Based			(MBD) pada
	Development			algoritma SRF-
	Approach			PLL yang lebih
				baik, untuk
				menghasilkan kode
				kualitas produksi
				secara otomatis,
				meningkatkan
				produktivitas dan
				mempersingkat
				waktu
				pengembangan
				modul sinkronisasi
				grid pada inverter
				yang terintegrasi
				pada grid. Efisiensi
				pendekatan
				pengembangan
				yang diusulkan
				diverifikasi, diuji
				dan divalidasi
				menggunakan
				simulasi
				MATLAB/Simulin
				k off-line, simulasi
				hardware-in-loop
				(HIL), simulasi
				software-in-loop
				(SIL).
				Implementasi
				perangkat keras
				dan hasil simulasi
				menunjukkan
				potensi penerapan
				MBD yang
				diterapkan pada
				SRF-PLL yang
				ditingkatkan pada
				inverter
				tersambung grid
				untuk sinkronisasi
				(Sonam et al.,
0	E-man	MAIIDAN	Dolostin -	2017).
8	Error	MAHRAN	Palestine,	Penelitian ini
	Compensation	QURAAN	2020	membahas

No Judul Jurnal N	Nama Peneliti	Tempat dan Tahun Penelitian	Pembahasan Jurnal
Algorithm for SRF-PLL in Three-Phase Grid-Connected Converters		Penelitian	algoritma kompensasi kesalahan berdasarkan synchronous reference frame phase-locked loop untuk estimasi fase yang akurat dari tegangan tiga fase yang terdistorsi termasuk tegangan fase asimetris, harmonisa, dan offset dc. Dalam makalah ini, efek dari kesalahan dianalisis secara komprehensif dalam stationary dan synchronous reference frames. Secara khusus, kesalahan diperkirakan dan dikompensasi dengan mengontrol komponen sumbu alfa dan sumbu beta dalam PLL agar seimbang. Kinerja kompensasi yang diusulkan diselidiki di bawah kondisi jaringan terdistorsi. Teknik yang diusulkan diverifikasi secara numerik dan eksperimental menggunakan Matlab/Simulink

No	Judul Jurnal	Nama Peneliti	Tempat dan Tahun Penelitian	Pembahasan Jurnal
			Tenentian	Dspace1202
				(Quraan, 2020).
9	Design of a	A. Hema	India, 2017	Penelitian ini
	Synchronous	Chander dan	111010, 2017	membahas strategi
	Reference Frame	Lalit Kumar		kontrol inverter
	Controller for			untuk sistem
	Single Phase			standalone
	Standalone			photovoltaic (PV).
	Photovoltaic			Synchronous
	Inverter			reference frame
				(SRF) dengan
				pengontrol
				proportional
				integral (PI)
				dirancang untuk
				mengatur tegangan
				keluaran sesaat dari
				inverter. Kontroler
				yang disajikan
				menggunakan arus
				beban sebagai
				umpan balik untuk
				arus dalam loop
				dan tegangan
				output sebagai
				umpan balik untuk
				tegangan luar loop
				. Kedua loop ini
				bersama-sama
				meningkatkan
				kinerja transien dan
				steady state.
				Bersamaan dengan
				ini, loop
				feedforward
				decoupling
				tegangan
				digunakan untuk
				meningkatkan ketahanan sistem.
				Metode pole zero
				1
				cancelling digunakan untuk
				mendapatkan nilai
				1
		1		gain dari kontroler

No	Judul Jurnal	Nama Peneliti	Tempat dan	Pembahasan
			Tahun	Jurnal
			Penelitian	
				PI. Sistem PV
				mandiri dengan
				kontrol inverter
				dipelajari dan
				disimulasikan
				secara analitis
				menggunakan
				MATLAB/
				Simulink (Chander
				& Kumar, 2018).
10	Improved	Mustafa Inci,	Turkey, 2016	Penelitian ini
	Synchronous	Kamil Cagatay		membahas
	Reference Frame	Bayındır dan		Improved
	based controller	Mehmet		Synchronous
	method for	Tümaya		Reference Frame
	multifunctional			(ISRF) untuk
	compensation			Dynamic Voltage
				Restorer (DVR).
				ISRF diusulkan
				dalam penelitian
				ini untuk
				kompensasi
				tegangan sag/swell
				dan harmonisa
				yang tidak
				seimbang. Hasil
				kinerja dari metode
				yang diusulkan
				menunjukkan
				ketahanan yang baik dan deteksi
				yang lebih cepat
				untuk tegangan sag/tidak
				sag/ildak seimbang/swell/har
				monisa
				dibandingkan
				dengan
				Symmetrical
				components based
				SRF (SCSRF) (İnci
				et al., 2016).

Dari Tabel 2.3 yang membahas beberapaa penelitian sebelumnya dapat disimpulkan masing-masing dari penelitian memiliki kelebihan dan kekurangannya sehingga menjadi referensi untuk penelitian ini. Diharapkan penelitian ini dapat lebih baik dari penelitian-penelitian sebelumnya. Maka dari itu penulis membuat penelitian yang berjudul "EKSTRAKSI HARMONISA TIGA FASA DENGAN NI MYRIO BERBASIS SYNCHRONOUS REFERENCE FRAME THEORY". Disini penulis merancang pengekstrak harmonisa pada sistem tiga fasa dengan menggunakan platform hardware NI myRio. Dalam penelitian ini penulis mengekstraksi arus harmonisa saja meskipun ekstraksi arus maupun tegangan memiliki cara kerja yang sama. Hal ini dilandasi distorsi harmonisa pada praktik lapangannya banyak ditemukan pada arus. Penelitian ini memiliki metode yang serupa dengan penelitian sebelumnya pada tabel Tabel 2.3, namun ada dua perbedaan dalam output ekstraksi yang dihasilkan dan penerapannya. Hasil ekstraksi harmonisa pada penelitian ini ditampilkan dalam bentuk gelombang dan analisis FFT dengan penerapannya pada hardware NI myRio. Selain karena memiliki sampling rate sebesar 500 kS/s secara keseluruhan analognya, NI myRio juga memiliki dukungan perangkat lunak Labview. Gelombang arus terukur yang telah diekstraksi berdasarkan teori SRF ditampilkan informasinya dalam bentuk GUI (Graphic User Interface) pada aplikasi labview.