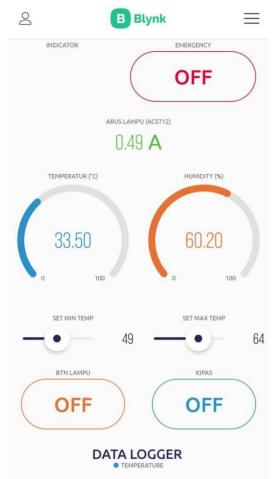
BAB II

TINJAUAN PUSTAKA

2.1 Internet of Things (IoT)

IOT digunakan sebagai infrastruktur jaringan global, yang menghubungkan benda-benda fisik dan virtual melalui ekspoitasi data *capture* dan kemampuan komunikasi. Infrastruktur tesebut terdiri dari jaringan yang telah ada, sensor dan kemampuan koneksi untuk mengembangkan layanan dan aplikasi kooperatif yang *independent* (Adani & Salsabil, 2019).



Gambar 2. 1 Konsep *Internet OF Things* (Solution, 2019)

Gambar 2. 1 merupakan konsep *Internet of Things* (IoT) yang memetakan jaringan yang menghubungkan berbagai objek tanda pengenal berupa alamat IP sehingga dapat berkomunikasi dan bertukar informasi tentang diri mereka sendiri dan lingkungan yang di persepsikan (Solution, 2019). Konsep kerja IoT dalam penerapannya mengacu pada tiga elemen utama, diantaranya yaitu barang fisik yang dilengkapi dengan modul IoT, perangkat koneksi internet yang mendukung proses kerja dan menjembatani antara modul IoT dengan internet, dan *platform cloud* untuk menyimpan *database*.

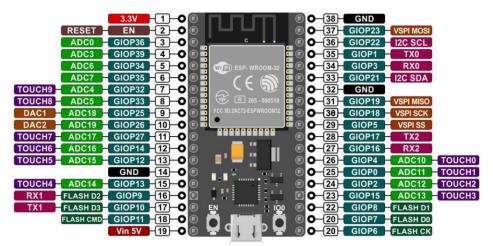
2.2 Blynk

Platform Blynk yang digunakan untuk memonitoring kinerja dari modul atau mikrokontroller melalui internet. Desain UI pada platform bylnk yang tersedia sudah sangat kompleks dan user friendly, serta mudah dimengerti sehingga dapat menghasilkan efisiensi penggunaan serta meminimalisir terjadinya error. Selain untuk menunjang keberlangsungan penggunaan protoype yang dilakukan oleh user, platform ini juga dapat membantu mempercepat proses perancangan karena memiliki banyak fitur yang tersedia di dalamnya (Artiyasa et al., 2021), seperti pada gambar 2. 2.

Gambar 2. 2 Tampilan *Bylnk*

2.3. Peralatan Kontrol

2.3.1 ESP 32


ESP 32 merupakan mikrokontroller penerus ESP8266 yang diperkenalkan oleh Espressif System yang sangat mendukung untuk digunakan dalam pembuatan aplikasi Internet of Things karena sudah didukung dengan modul WiFi yang tertanam dalam chipnya. ESP 32 memiliki jumlah pin out dan analog yang banyak sehingga memudahkan dalam penerapan modul ataupun sensor lebih dari satu, serta terdapat memori yang lebih besar untuk memuat data log yang cukup banyak (Muliadi et al., 2020).

Penggunaan module ESP32 dapat menunjang kebutuhan penerapan sensor maupun module yang membutuhkan banyak port, karena ESP32 ini memiliki lebih banyak GPIO dengan banyak fungsi, juga sudah terintegrasi dengan Wi-Fi dan *Bluetooth* untuk mempermudah proses IoT sehingga bisa dikontrol dari jarak jauh. Penerapan antara modul dan Mikrokontroller perlu adanya penyesuaian pin dan sesuai dengan skematik posisi pin ESP32 pada gambar 2.3 dan spesifikasi mikrokontroller pada tabel 2.1.

Tabel 2. 1 Spesifikasi ESP32

Spesifikasi	ESP32
Procesor	Xtensa dual-core (or single-core) 32-bit LX6
	microprocessor, operating at 160 or 240 MHz
Memory	520 KB SRAM
Wireless connectivity	Wi-Fi 802.11 b/g/n, Bluetooth v4.2 BR/EDR and BLE (shares the radio with Wi-Fi),HT40.

Spesifikasi	ESP32								
Peripheral I/O	12-bit SAR ADC (up to 18 channels), 2x 8-bit DACs, 10x								
	touch sensors (capacitive sensing GPIOs), 4x SPI, 2x								
	I2S interfaces, 2x I2C interfaces, 3x UART,								
	SD/SDIO/CE-ATA/MMC/eMMC host controller,								
	SDIO/SPI slave controller, Ethernet MAC interface,								
	CAN bus 2.0, infrared remote controller (TX/RX, up to								
	8 channels), motor PWM, LED PWM (up to 16								
	channels), hall effect sensor, ultra low power analog								
	pre-amplifier								
Sensor	Touch sensor & Temperature sensor								
Working Temperature	-40°C - 125°C								
Security	IEEE 802.11 standard security, secure boot, flash,								
	encryption, 1024-bit, OTP (up to 768-bit for customers),								
	cryptographic hardware acceleration (AES, SHA-2,								
	RSA, ECC), random number generator (RNG)								

Gambar 2. 3 Skematik Posisi Pin ESP32 (Muliadi et al., 2020)

2.5 Sensor Suhu dan Kelembapan DHT22

DHT-22 atau AM2302 untuk mendeteksi sensor suhu dan kelembaban yang memiliki keluaran berupa sinyal digital dengan konversi dan perhitungan dilakukan oleh MCU 8-bit terpadu. Sensor ini memiliki kalibrasi akurat dengan kompensasi suhu ruang penyesuaian dengan nilai koefisien tersimpan dalam memori OTP terpadu. Sensor DHT22 memiliki rentang pengukuran suhu dan kelembaban yang luas (Kurnia Utama, 2016) seperti pada gambar 2. 4.

Gambar 2. 4 Sensor DHT22 (Kurnia Utama, 2016)

2.6 Lampu Pijar

Lampu pijar digunakan sebagai sumber cahaya buatan yang dihasilkan melalui penyaluran arus listrik melalui *filamen* yang didalamnya diisi dengan unsur gas lembam dan sedikit unsur *halogen* yang akan memanas dan menghasilkan cahaya dengan membalik reaksi kimia penguapan *wolfram* dari *filamen*. Lampu pijar dapat mengoperasikan *filamen* pada suhu yang lebih tanpa pengurangan umur, selain dimanfaatkan cahaya yang dihasilkan sebagai penerangan penggunaan lampu juga dapat bermanfaat bagi proses pemanasan karena suhu yang dihasilkan lampu *halogen* dapat mencapai 3000K-3200K dengan umur pakai 4000 jam (Fauzan, 2017), seperti pada gambar 2. 5.

Gambar 2. 5 Lampu Pijar (Fauzan, 2017)

2.7 ACS712

Modul ACS712 difungsikan untuk mendeteksi arus dengan tipe variasi arus yang bervariasi diantaranya yaitu 5A, 20A, dan 30A. ACS712 memiliki cara kerja membaca arus yang mengalir melalui kabel tembaga dengan menghasilkan medan magnet yang di rubah menjadi tegangan proposional melalui arus yang didapat dari IC (Santoso et al., 2019), seperti pada gambar 2. 6.

Gambar 2. 6 ACS712 (Santoso et al., 2019)

2.8 Stepdown LM2596 DC-DC

LM2596 difungsikan untuk menurunkan tegangan dengan mengkonversikan tegangan input DC menjadi tegangan DC, hal tersebut dapat dilakukan karena adanya multiturn potensiometer yang dapat merubah tegangan outputnya (Hamdani et al., 2019). Menghidupkan alat menggunakan *relay* diperlukan penurunan tegangan sesuai dengan yang dibutuhkan oleh *relay* yaitu sebesar 5V seperti pada gambar 2. 7.

Gambar 2.7 Stepdown LM2596 DC-DC (Hamdani et al., 2019)

2.9 Kipas Pendingin

Kipas pendingin digunakan untuk mengatur suhu dengan cara membuang suhu panas yang ada didalam ruangan sehingga stabilnya suhu yang dihasilkan (Proportional-integral- & Indrawan, 2019), seperti pada gambar 2. 8.

Gambar 2. 8 Kipas Pendingin (Proportional-integral- & Indrawan, 2019)

2.10 Modul Relay 2 Channel

Relay 2 channel difungsikan sebagai system kontrol untuk menghidupkan lampu dan kipas. Relay ini berfungsi untuk mengatur arus dan untuk menghidupkan lampu dan kipas dengan logic yang sebelumya sudah di sebutkan apabila suhu mencapai batas max lampu akan padam dan kipas akan menyala, begitupun sebaliknya seperti pada gambar 2. 9 (Patricia, 2021).

Gambar 2. 9 Modul Relay 2 Channel (Patricia, 2021)

2.11 Modul Micro SD

Modul Micro SD digunakan untuk menyimpan datalog dari proses pengolahan daun kelor dimana nantinya akan dituliskan datalog berupa kenaikan atau penurunan suhu maupun *humidity*, muatan listrik, dan keterangan nyalanya lampu secara *realtime* seperti pada gambar 2. 10 (Hariadi et al., 2022).

Gambar 2. 10 Modul Micro SD (Hariadi et al., 2022)

2.12 LCD 16x2

Modul LCD 16x2 digunakan sebagai salah satu informasi yang ditampilkan berupa *interface* antara mikrokontroler dengan *user*. Penampil LCD ini untuk melihat keadaan sensor ataupun keadaan jalannya program secara langsung dan bisa dihubungkan dengan mikrokontroler apa saja seperti pada gambar 2.11 (Muliadi et al., 2020).

Gambar 2. 11 *LCD* 16x2 (Muliadi et al., 2020)

2.13 Module I2C

Modul I2C digunakan untuk komunikasi serial yang akan mengirimkan atau menerima informasi data dari mikrokontroller. Sistem I2C terdiri dari saluran SCL (Serial Clock) dan SDA (Serial Data) yang membawa informasi data antara I2C dengan pengontrol. Perangkat yang dihubungkan dengan sistem I2C Bus dapat bertindak sebagai *Master* dan *Slave* seperti pada gambar 2.12 (Soares, 2017).

Gambar 2. 12 Modul I2C (Soares, 2017)

2.14 Power Supply 12V 5A

Power Supply 12V 5A (PSU) yang dapat difungsikan sebagai pemasok tenaga yang digunakan sebagai penyuplai daya ke seluruh komponen elektronika yang kompleks (Ekayana, 2016) seperti pada Gambar 2. 13.

Gambar 2. 13 Power Supply 12V 5A (Ekayana, 2016)

2.15 Daun Kelor

Daun kelor memiliki manfaat bagi tubuh manusia dengan adanya zat anti peradangan dengan berbagai senyawa di dalamnya. Daun kelor dalam pengolahannya perlu di sortir dan dicuci bersih agar mendapatkan kualitas pengeringan daun yang baik (Zainuddin & Hajriani, 2021) Gambar 2. 14 berikut merupakan detail dari daun kelor (*Moringa Oleifera*).

Gambar 2. 14 Daun Kelor (Angelina et al., 2021)

Tabel 2. 2 Kandungan gizi daun kelor (*Moringa Oleifera*) segar dan daun kelor kering per 100gr (Angelina et al., 2021)

Kandungan Gizi	Daun Kelor	Daun Kelor	Referensi
Vadanain (0/)	Segar	Kering	
Kadar air (%)	75,9	6	
Kadar abu	-	7,95	(Shiriki et al., 2015)
Kalori (kal)	92	205	
Protein (%)	6,7	23,78	(Augustyn et al., 2017)
Lemak (%)	4,65	2,74	
Karbohidrat (%)	12,5	51,66	(Ghosh et al., 2009)
Serat (%)	7,92	12,63	(Aminah et al., 2015)
Kalsium (mg)	440	2003	(USDA National Nutrient
Kalium (mg)	259	1324	Database for Standard
Besi (mg)	0,85	28,2	Reference Release 28,
Magnesium (mg)	42	368	2016)
Seng (mg)	0,16	3,29	
Fosfor (mg)	70	204	
Tembaga (mg)	0,07	0,57	
Vitamin A (mg)	6,78	18,9	
Niacin (B3) (mg)	0,8	8,2	
Riboflavin (B2) (mg)	0,05	20,5	
Thiamin (B1) (mg)	0,06	2,64	
Vitamin C (mg)	220	17,3	

Tabel 2. 2 merupakan tabel kandungan gizi daun kelor (*Moringa Oleifera*) segar dan daun kelor kering per 100gr. (Angelina et al., 2021) menyatakan bahwa daun kelor yang telah melewati proses pengeringan memiliki kandungan nutrisi yang lebih tinggi dibanding dengan daun kelor segar, kandungan nutrisi tersebut yang dibutuhkan untuk dijadikan obat maupun produk olahan kesehatan lainnya. Selain kandungan nutrisi kadar *flavonoid* juga sangat butuh untuk dijadikan sebagai

produk kesehatan, namun untuk mendapatkan hasil pengeringan daun kelor dengan kandungan nutrisi dan kadar *flavonoid* yang terjaga dibutuhkannya suhu yang stabil dan konsisten dengan suhu 37°C, karena suhu dalam pengeringan daun kelor yang baik tidak lebih dari 60°C. acuan untuk parameter tingkat kekeringan daun kelor sebaiknya dikeringkan dengan batas maksimal kadar air 10%, karena parameter tersebut dapat menjaga kandungan nutrisi dan kadar flavonoid agar tidak hilang (Rozi et al., 2021).

2.16 Penelitian Terkait

Penelitian terkait bidang *Internet of Things (IoT)* dengan penerapan yang ditujukan untuk membantu memperluas manfaat dari konektivitas internet, baik digunakan untuk berbagi data, melakukan pengontrolan, dan pengendalian terhadap suatu alat seperti pada tabel 2. 3 dan tabel 2. 4.

Keterbaruan dari penelitian terkait yaitu pengembangan alat pengering dengan menggunakan modul ACS712 dapat difungsikan sebagai indikator lampu apabila lampu mati, karena alat pengering daun kelor pada umumnya membutuhkan lebih dari satu lampu sesuai dengan volume alat pengering tersebut. Konsistensi suhu akan bergantung pada nyalanya lampu sebagai sumber panas, apabila terdapat lampu yang mati maka proses pengeringan tidak akan berjalan maksimal. Selain itu, data log proses pengeringan akan tersimpan pada *memory card* yang disematkan pada alat pengering sehingga pengguna dapat dengan mudah memonitoring hasil dari proses pengeringan berdasarkan data.

Tabel 2. 3 State Of The Art

NO	PENULIS	JUDUL	TUJUAN	HASIL			
1	(Hariadi et al.,	Mesin Oven Pengering	Membantu memudahkan UKM dalam	Menghasilkan waktu proses pada saat			
	2022)	Cerdas Berbasis Internet	pengontrolan dan memonitoring terhadap	pengeringan lebih cepat, kualitas produk hasil			
		of Things (IoT).	proses pengeringan yang bisa dilakukan	n pengeringan lebih baik dan seragam, prod			
			secara online.	lebih bersih dan higienis, proses pengeringan			
				tidak terganggu dengan perubahan cuaca.			
2	(Yudantoro et	Penerapan Teknologi <i>IoT</i>	Pemanggangan roti oven bisa dioperasikan	Menghasilkan alat yang dapat membantu			
	al., 2021)	Pada <i>Smart Oven</i> Untuk	serta memonitoring secara <i>real-time</i> dengan	menghasilkan kualitas produk yang konsisten			
		Toko Roti Danisa.	diterapkannya beberapa sensor seperti	serta dapat meningkatkan omset penjualan pada			
			sensor panas, kelembaban, kecepatan kipas,	toko tersebut yang di sebabkan oleh smart oven			
			serta sensor waktu dapat memaksimalkan	yang mampu menghasilkan produk yang sama			
			prosesnya.	rata dan konsisten.			
3	(Murti et al.,	Model Pengering Ikan	Sebagai alternatif pelaku usaha guna				
	2021)	Asin Berbasis <i>IoT</i>	meningkatkan produksi ikan asin pada saat	singkat 10-12 jam dengan suhu yang stabil antara			
		Sebagai Alat Alternatif	cuaca buruk.	45-50°C dengan konsumsi listrik 169,6 watt, serta			
		Dinusin Hujan Dalam		dapat menampung ikan asin sebanyak 6 kg			
		Skala <i>Home Industry</i> .		ukuran sedang.			
4	(Nugroho et	Perancangan Alat	Sebagai subtitusi pengering konvensional	Menghasilkan stabilitas proses pengeringan			
	al., 2021)	Pengering Cengkeh	dengan yang menggunakan cara tradisional	menggunakan suhu 75°C mendapat efisiensi			
		Berkapasitas 30 kg	dengan menjemur di bawah sinar matahari.	termal sebesar 10% dengan kadar air yang			
		Berbasis Arduino.		didapat sebesar 9,27%			
5	(Saputra et al.,	Perancangan Internet of	Memenuhi kebutuhan dengan cara tahap	Proses pengontrolan dan pengendalian yang			
	2020)	Things (IoT) Pada Alat	produksi dilakukan tanpa adanya hambatan	dapat dilakukan secara <i>real-time</i> , serta proses			
		Pengering Biji Cengkeh.	dari buruknya cuaca serta bisa dilakukan	produksi yang bisa dilakukan tanpa panas dari			
			kapanpun dan dimudahkan dalam proses	sinar matahari.			
			pengontrolan dan pengendalian.				

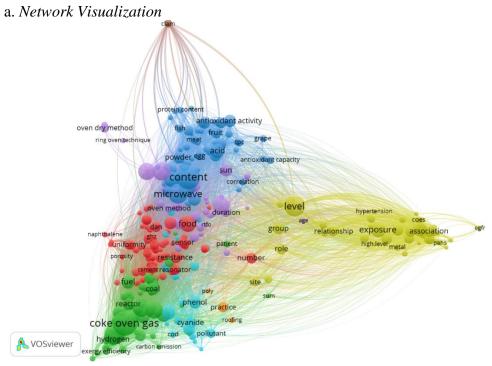
NO	PENULIS	JUDUL	TUJUAN	HASIL
6	(Nurbaeti et al., 2021)	Rancang Bangun Alat Pengering Biji Kopi	Memanfaatkan <i>heater</i> sebagai pengganti sinar matahari selain itu pemilik usaha tani	dimudahkan tanpa bergantung terhadap cuaca,
		Berbasis Internet Of Things.	kopi akan terbantu dengan diterapkannya teknologi <i>IoT</i> .	selai itu proses pengeringan akan dilakukan <i>memonitoring</i> secara otomatis dengan mengirimkan informasi dari perangkat menuju <i>firebase google</i> melalui internet secara <i>real-time</i> .
7	(Tukadi et al., 2020)	Rancang Bangun Pengering Ikan Menggunakan Mikrokontroler Berbasis Web.	Membantu proses pengeringan dan meng efisienkankan proses tanpa bergantung pada cuaca.	Pengeringan ikan berhasil dilakukan dengan memelakukan <i>memonitoring</i> suhu dan kelembapan, serta adanya korelasi antara <i>hardware</i> dan <i>software</i> yang sempurna berhasil mengurangi persentase kandungan air pada daging ikan sebesar 13% selama 8 jam.
8	(Ekayana, 2016)	Rancang Bangun Alat Pengering Rumput Laut Berbasis <i>Mikrokontroler</i> <i>Arduino UNO</i>	Menggantikan peranan matahari yang mempunyai pengaruh besar bagi proses pengeringan menggunakan elemen pemanas sebagai penggantinya.	Mmenghasilkan waktu yang dibutuhkan untuk proses pengeringan yaitu selama 7 jam dengan menggunakan <i>DHT11</i> mampu merespon perubahan nilai suhu dan kelembaban.
9	(Andriani et al., 2021)	Rancang Bangun Alat Pengering Ikan Bage Otomatis Menggunakan Sensor SHT11 dan Real Time Clock	Mempertahankan kualitas produk olahan sebelum di pasarkan dan sampai ke tangan pembeli, dikarenakan adanya faktor yang memperngaruhi kualitas pengeringan secara konvensional diantaranya cuaca yang tidak stabil, debu yang mungkin menempel pada produk, serta gangguan lainnya.	pada proses pengeringan dengan perolehan data yang dapat dimemonitoring secara <i>real-time</i> dengan menghasilkan produk yang lebih tahan lama dibanding dengan pengeringan

NO	PENULIS	JUDUL	TUJUAN	HASIL			
10	(Budiawan &	Alat Pengering dan	Berkontribusi kepada petani dimana	Menghasilkan tingkat kekeringan produk yang			
	Wendanto,	Pengukur Kadar Air Pada	seringnya terjadi perubahan cuaca yang	seimbang dengan menentukan kadar air sesuai			
	2015)	Gabah Berbasis	tidak menentu serta dapat mengefisiensikan	dengan yang diperlukan produk.			
		Mikrokontroler	waktu dan tenaga.				
11	(Mariza	Prototype Smart Home	Memudahkan controlling dan	Komponen hardware dan software yang tersusun			
	Wijayanti,	Dengan Modul	memonitoring alat elektronik pada rumah	dapat melakukan pengontrolan terhadap			
	2022)	NodeMCU ESP8266	dengan mengkoneksikanya dengan <i>internet</i> .	smarthome menggunakan aplikasi Blynk. Selain			
		Berbasis Internet of		itu dengan diterapkannya <i>NodeMCU</i> dapat			
		Things (IoT).		mengontrol kinerja elektronik yang sesuai			
				sehingga meminimalisir terjadinya <i>error</i> .			
12	(Samsugi et	Arduino dan Modul WiFi	memonitoring perangkat elektronika yang	Menghasilkan perangkat elektronika yang bisa			
	al., 2018)	ESP8266 Sebagai Media	digunakan pada rumah tangga sehingga				
		Kendali Jarak Jauh	dapat mengefisiensikan bahkan menghemat	pengguna lupa mematikan arus listrik yang ada			
		Dengan Antarmuka	penggunaan daya listrik.	dirumah maka pengguna dapat memonitoring			
10		Berbasis Android		dari jauh.			
13	(Anistyasari et	Mesin Oven Pengering	Merancang mesin oven pengering cerdas	Menghasilkan prototype oven yang dapat bekerja			
	al., 2019)	Cerdas Berbasis Internet	berbasis Internet of Things.	offline maupun online agar dapat mempercepat			
		of Things (IoT)		waktu proses pengeringan, menghasilkan produk			
				dengan kualitas yang lebih baik, proses			
				pengeringan tidak bergantung dengan cuaca,			
				serta pengoperasian dan maintenance dapat			
1.4	(Muladi at al	Dangamhangan	Maranaana ayan yana danat marinakatkar	dilakukan dengan mudah.			
14	(Muladi et al.,	Pengembangan oven	Merancang oven yang dapat meningkatkan	Menghasilkan prototype oven yang memiliki			
	2021)	dengan kontrol elektronik	kualitas produksi dengan tingkat	ruang bakar besar serta dapat memaksimalkan			
		untuk peningkatan	kematangan yang pas serta mempunyai	proses produksi dengan meningkatkan kualitas			
		kapasitas dan kualitas	kapasistas yang besar.	produk melalui system control berbasis IoT yang			
		produksi kue bolu		dapat dilakukan dari jarak jauh.			

NO	PENULIS	JUDUL	TUJUAN	HASIL				
15	(Amelia et al.,	Smart Control of	Merancang sistem untuk mendeteksi dan	Menghasilkan prototype Smart COpak yang				
	2020)	Temperature and	mengontrol suhu sesuai dengan suhu	dapat menjaga cetakan opak agar tidak meleleh				
		Humidity for Opak Dryer	matahari serta proses pengeringan dapat	_				
		Oven	dilakukan tanpa berganung pada cuaca.	sesuai dengan suhu sinar matahari berbasis IoT.				
16	(Hardiyansyah,	Rancang Bangun Sistem	Merancang dan membuat sistem untuk	Menghasilkan prototype mesin oven kopi yang				
	2021)	Kontrol Suhu Pada Mesin	mengontrol suhu pada mesin pengering kopi					
		Oven Kopi Tray Rotary	guna mengurangi kadar air.	pada bij kopi melalui proses pengeringan berbasis				
		Berbasis Arduino		IoT.				
17	(Puangphaka	Rancang Bangun Lemari	Merancang <i>prototype</i> oven untuk membantu	Menghasilkan <i>prototype</i> oven guna memudahkan				
	Masena dan	pengering Daun	proses pengeringan agar bisa dilakukan	proses pengeringan.				
	Pranot	Marungga	dengan cepat.					
	Nantiyakul,							
	2020)							
18	(Rusdi &	Pengaruh Berbagai	penelitian ini bertujuan untuk melihat	Menghasilkan penyusutan kadar air yang				
	Mastang,	Metode Pengeringan	pengaruh berbagai proses pengeringan	signifikan yaitu sebesar 75%, meningkatkan				
	2021)	Terhadap Kadar Air,	terhadap kadar air,abu, dan nutrisi yang	kadar abu, dan nutrisi yang terkandung.				
		Abu Dan protein tepung	terkandung pada daun kelor.					
		daun kelor						
19	(Zainuddin &	Pembuatan Bubuk	Mengidentifikasi suhu dan mengetahui lama	1 0 0				
	Hajriani, 2021)	Kering dari Daun Kelor	pengeringan yang paling baik.	yang baik terbagi kedalam 3 golongan				
		(Moringa Oleifera)		diantaranya vitamin C serta kadar air adalah				
		dengan Perbedaan Suhu		perlakuan dengan suhu pengeringan 35 _° C dan				
		dan Lama Pengeringan		lama pemanasan 5 jam. Sifat organoleptik berupa				
		Untuk Tambahan		tekstur, citarasa dan aroma yang paling disukai				
		Makanan Fungsional		yaitu pada perlakuan suhu pengeringan 65°C dan				
				lama pemanasan 7 jam, sedangkan untuk warna				

NO	PENULIS	JUDUL	TUJUAN	HASIL
				yang paling diminati adalah perlakuan 35 _o C dan lama pemanasan 5 jam.
20	(Kurniawati & Fitriyya, 2018)	Karakteristik Tepung Daun Kelor Dengan Metode Pengeringan Sinar Matahari	Mengetahui karakteristik tepung daun kelor dengan pengeringan sinar matahari.	Karakteristik tepung daun kelor yaitu mempunyai rendemen 20% (b/b), kadar air 6.64%, kadar abu 11.67%, kadar lemak 6.74%, kadar protein 23.37%, serat kasar 3.67%, karbohidrat 51.59%, kalori 342.31 kkal/kg, zat besi (Fe) 177.74 ppm, kalsium (Ca) 16350.58 ppm, natrium (Na) 1206.54 ppm dan fosfor (P2O5) sebesar 290.65 mg/100gr.
21	(Warnis et al., 2020)	Pengaruh Suhu Pengeringan Simplisia Terhadap Kadar Flavonoid Total Ekstrak Daun Kelor (Moringa Oleifera L.)	Menguji pengaruh suhu pengeringan simplisia daun kelor terhadap kadar flavonoid total ekstrak.	

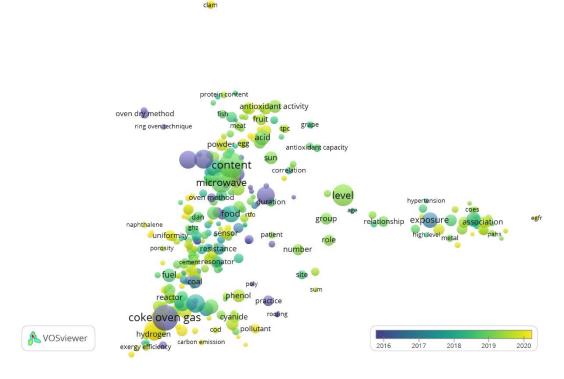
Tabel 2.4 Matriks Penelitian


		ulic Judul						N	Ietode				
				Pla	tform	/Basis	}		Sumber Energi				
No	Penulis	Judui	W e b	Mobile Apps	Bly nk	Clo ud	Mikroko ntroller	Blower	Tungku	Heater	Kompor	Burner Gas	Lampu
1	(Hariadi et al., 2022)	Cerdas Berbasis Internet of Things (IoT)		~		*			~		>		
2	(Yudantoro et al., 2021)	Penerapan Teknologi <i>IoT</i> Pada <i>Smart Oven</i> Untuk Toko Roti Danisa		~						~			
3	(Murti et al., 2021)	Model Pengering Ikan Asin Berbasis <i>IoT</i> Sebagai Alat Alternatif Dinusin Hujan Dalam Skala <i>Home Industry</i>			~	*				*			
4	(Nugroho et al., 2021)	Perancangan Alat Pengering Cengkeh Berkapasitas 30 kg Berbasis <i>Arduino</i>					*			*			
5	(Saputra et al., 2020)	Perancangan Internet of Things (IoT) Pada Alat Pengering Biji Cengkeh		*		*				>			

								N	Ietode				
				Pla	ıtform	/Basis	5	Sumber Energi					
No	Penulis	Judul	W e b	Mobile Apps	Bly nk	Clo ud	Mikroko ntroller	Blower	Tungku	Heater	Kompor	Burner Gas	Lampu
6	(Nurbaeti et al., 2021)	Rancang Bangun Alat Pengering Biji Kopi Berbasis <i>Internet Of Things</i> .		*		*				*			
7	(Tukadi et al., 2020)	Rancang Bangun Pengering Ikan Menggunakan Mikrokontroler Berbasis Web.	>							*			
8	(Ekayana, 2016)	Rancang Bangun Alat Pengering Rumput Laut Berbasis <i>Mikrokontroler Arduino UNO</i>					~			*			
9	(Andriani et al., 2021)	Rancang Bangun Alat Pengering Ikan Bage Otomatis Menggunakan Sensor SHT11 dan Real Time Clock					*						*
10	(Budiawan & Wendanto, 2015)	Alat Pengering dan Pengukur Kadar Air Pada Gabah Berbasis Mikrokontroler					*						*

								N	Ietode				
				Pla	ıtform	/Basis	S			Platfor	m/Basis		
No	Penulis	Judul	W e b	Mobile Apps	Bly nk	Clo ud	Mikroko ntroller	Blower	Tungku	Heater	Kompor	Burner Gas	Lampu
11	(Mariza Wijayanti, 2022)	Prototype Smart Home Dengan Modul NodeMCU ESP8266 Berbasis Internet of Things (IoT).			~	*							
12	(Samsugi et al., 2018)	Arduino dan Modul WiFi ESP8266 Sebagai Media Kendali Jarak Jauh Dengan Antarmuka Berbasis Android		*									
13	(Anistyasari et al., 2019)	Mesin Oven Pengering Cerdas Berbasis Internet of Things (IoT)		*				*					
14	(Muladi et al., 2021)	Pengembangan oven dengan kontrol elektronik untuk peningkatan kapasitas dan kualitas produksi kue bolu					*					*	
15	(Amelia et al., 2020)	Smart Control of Temperature and Humidity for Opak Dryer Oven					*			*			

			Metode										
				Pla	tform	/Basis	3			Platfor	m/Basis		
No	Penulis	Judul	W	Mobile	Bly	Clo	Mikroko	Blower	Tungku	Heater	Kompor	Burner	Lampu
			e	Apps	nk	ud	ntroller					Gas	
			b										
16	(Hardiyansy	Rancang Bangun Sistem					~				*		
	ah, 2021)	Kontrol Suhu Pada Mesin											
		Oven Kopi Tray Rotary											
		Berbasis Arduino											
17	Muhammad	Pengembangan Oven			*		*						*
	Alfan	Berbasis Smart Oven											


2.17 VOS Viewer

Gambar 2. 15 Network Visualization

Gambar 2.15 merupakan *Network Visualization* dari jurnal yang banyak dikutip terkait pembahasan *Oven*, penjumlahan ini menunjukan beberapa temuan penting dari penelitian yang akan dijadikan acuan untuk penelitian lanjutan. Analisis *statistic bibliometric* ini diambil dari gabungan beberapa basis data rujukan seperti *Scopus*, *Google Scholar*, *Crossref Search*, dan *OpenAlex Search*. *Occurens* yang ada di batasi dengan batas minimum 10 *term* sehingga kata ataupun istilah yang muncul menjadi 10 kali saja berdasarkan judul dan abstrak, namun semakin banyak angka yang dimasukan maka akan semakin sedikit pula *term* yang muncul. Istilah hasil ekstraksi *VOSViewer* memenuhi 569 ambang batas dari 21186 *terms* dengan menampilkan berapa banyak kemunculan bersama dari kalimat yang sudah dipotong sesuai dengan kata kunci, maka didapatlah 341 *term* atau istilah yang berkaitan dengan *Oven*.

b. Peluang Penelitian

Gambar 2. 16 Overlay Visualization

Gambar 2.16 merupakan *Overlay Visualization* untuk melihat peta perkembangan pencarian penelitian. jarak antar jurnal menunjukan keterkaitan antar jurnal dalam *co-citation*, apabila jarak jurnal semakin berdekatan maka hubungan antara dua jurnal tersebut semakin kuat.