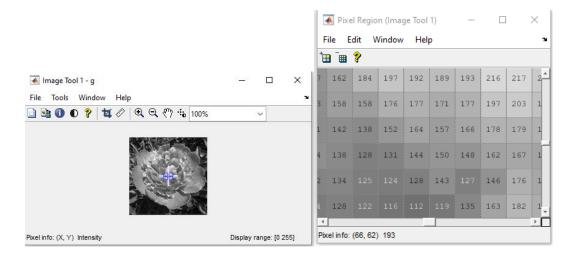

BAB II

TINJAUAN PUSTAKA

2.1. Citra RGB

Citra RGB merupakan citra yang terdiri dari 3 warna yaitu, *red* (merah), *green* (hijau), dan *blue* (biru). Setiap piksel yang ada pada citra RGB terdiri dari 3 kombinasi warna tersebut dengan masing-masing nilai intensitasnya berada diantara 0-255. Setiap informasi piksel RGB disimpan ke dalam 1 *byte* data, jadi 8 bit pertama menyimpan nilai merah, yang kedua hijau, dan yang ketiga biru, sehingga dalam 1 piksel citra RGB mempunyai ukuran 24 bit.

Banyaknya kombinasi warna yang mungkin dihasilkan adalah 256x256x256 = 16.777.216 warna. Berdasarkan Gambar 2.1 gambaran dari citra RGB dan matriks penyusunnya adalah:


Gambar 2.1 Citra RGB dan Matriks Penyusunnya

2.2. Citra Grayscale

Citra *grayscale* merupakan citra yang mempunyai intensitas piksel yang menunjukkan nilai derajat keabuan. Nilai piksel yang dimiliki adalah 0-225 yang ada pada 1 kanal warna. Nilai piksel 0 menunjukkan warna hitam dan nilai piksel 255 menunjukkan warna putih. Jadi, warna abu-abu yang dihasilkan berada diantara *range* nilai tersebut. Cara yang digunakan untuk menghitung konversi dari citra RGB menjadi citra *grayscale* dengan hitungan matemastis adalah:

$$Grayscale = (0.2989 \text{ x } red) + (0.5870 \text{ x } green) + (0.1140 \text{ x } blue)$$

Berdasarkan Gambar 2.2 gambaran dari citra *grayscale* dan matriks penyusunnya adalah:

Gambar 2.2 Citra *Grayscale* dan Matriks Penyusunnya

2.3. Principal Component Analysis

Beberapa Principal Component (PC) sudah cukup untuk menjelaskan struktur data asli. Jika data dimensi asli sulit untuk direpresentasikan melalui grafik, maka dengan 2 PC atau 1 PC bisa dicitrakan melalui grafik (Santosa 2007). Jika

terdapat contoh data dengan susunan seperti pada Gambar 2.3, dengan n adalah jumlah variabel/atribut dan m adalah banyaknya observasi.

$$X = \begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1n} \\ X_{21} & X_{22} & \cdots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{m1} & X_{m2} & \cdots & X_{mn} \end{bmatrix}$$

Gambar 2.3 Contoh Susunan Data PCA

Kemudian data tersebut dapat ditransformasikan ke dalam suatu kolom, misalkan dengan cara centering yaitu mengurangi setiap data dengan rata-rata dari setiap atribut yang ada, dengan rumus seperti pada Gambar 2.4 di bawah ini:

$$\hat{X} = X - \bar{X}$$

Gambar 2.4 Rumus centering

Dapat dijelaskan bahwa X^n adalah vektor hasil setelah centering, X adalah vektor kolom dan merupakan rata-rata dari kolom yang bersangkutan. Proses tersebut dilakukan untuk semua kolom dari I=1 sampai I=n, dan untuk mendapatkan besaran baru digunakan matriks Covariance (C) seperti pada Gambar 2.5.

$$C = \frac{\hat{X}^T \hat{X}}{m-1}$$

Gambar 2.5 Matriks Covariance

Di dalam pattern *recognition*, fitur-fitur suatu citra menggunakan PCA direpresentasikan sebagai *eigenvectors*. *Eigenvectors* merupakan kumpulan hubungan karakteristik-karakteristik dari suatu citra untuk mengenali citra tersebut secara spesifik. Setelah matrik *covariance* dihitung, langkah berikutnya adalah mencari eigenvalue dan eigenvector. *Eigenvalue* yang didapat diurutkan mulai yang terbesar sampai dengan yang terkecil, serta *eigenvector* yang bersesuaian dengan *eigenvalue* tersebut juga diurutkan.

2.4. Operasi Morfologi

Operasi morfologi citra merupakan suatu proses yang bertujuan untuk mengubah bentuk objek pada citra asli. Proses tersebut dapat dilakukan pada citra grayscale maupun citra biner. Jenis-jenis operasi morfologi di antaranya adalah dilasi, erosi, closing, dan opening. Seperti pada Gambar 2.6 secara berurutan, persamaan yang digunakan untuk masing-masing operasi yaitu:

$$A \oplus B \cdots \cdots (1)$$

$$A \ominus B \cdots \cdots (2)$$

$$A \cdot B = (A \oplus B) \ominus B \cdots \cdots (3)$$

$$A \cdot B = (A \ominus B) \oplus B \cdots \cdots (4)$$

Gambar 2.6 Persamaan Operasi Morfologi

2.5. K-Nearest Neighbor

Algoritma *K-Nearest Neighbor* (KNN) adalah sebuah metode untuk melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya

paling dekat dengan objek tersebut. Data pembelajaran diproyeksikan ke ruang berdimensi banyak, dimana masing – masing dimensi merepresentasikan fitur dari data. Algoritma KNN termasuk metode yang menggunakan algoritma *supervised*. Perbedaan antara *supervised learning* dengan *unsupervised learning* adalah pada supervised learning bertujuan untuk menemukan pola baru dalam data dengan menghubungkan pola data yang sudah ada dengan data yang baru. Sedangkan pada *unsupervised learning*, data belum memiliki pola apapun, dan tujuan *unsupervised learning* untuk menemukan pola dalam sebuah data (Huchon et al., 1981).

Tujuan dari algoritma KNN adalah untuk mengklasifikasi objek baru berdasarkan atribut dan training *samples*. Algoritma KNN menggunakan klasifikasi ketetanggaan sebagai nilai prediksi dari contoh data uji yang baru. Jarak yang digunakan adalah jarak *Euclidean Distance*.

Jarak *Euclidean* adalah jarak yang paling umum digunakan pada data numeric. Algoritma KNN merupakan algoritma yang menentukan nilai jarak pada pengujian data *testing* dengan data *training* berdasarkan nilai terkecil dari nilai ketetanggaan terdekat (Ismanto & Wardoyo, 2016).

Kedekatan didefinisikan dalam jarak matriks, seperti jarak *Euclidean*. Jarak Euclidean dapat dicari dengan menggunakan persamaan yang ada pada Gambar 2.7.

$$Dxy = \sqrt{\sum_{i=1}^{n} (X_i - Y_i)^2}$$

Gambar 2.7 Persamaan Jarak *Euclidean*

Keterangan:

D = Jarak kedekatan

x = data trainig

y = data testing

n = jumlah atribut individu antara 1 s.d. n

f = fungsi similiarty atribut 1 antara kasus X dan Y

i = Atribut individu antara 1 sampai dengan n

Langkah untuk menghitung metode *K-Nearest Neighbor* antara lain:

- 1. Melakukan penentuan parameter K (jumlah tetangga paling dekat).
- 2. Menghitung kuadrat jarak *euclid* (*query instance*) masing-masing objek terhadap data sampel yang diberikan menggunakan persamaan 1.
- Mengurutkan objek tersebut ke dalam kelompok yang mempunyai jarak Euclid terkecil.
- 4. Mengumpulkan kategori Y (Klasifikasi Nearest Neighbor)
- 5. Dengan kategori Nearest Neighbor yang paling mayoritas maka dapat diprediksi nilai *query instance* yang telah dihitung.

2.6. Confusion Matrix

Confusion Matrix adalah tabel yang digunakan untuk mengukur kinerja atau tingkat kebenaran dari sebuah proses klasifikasi supervised learning pada machine learning. Confusion matrix pada dasarnya dilakukan untuk menggambarkan lebih detail tentang jumlah data yang diklasifikasikan dengan benar maupun salah berdasarkan jumlah prediksi dari setiap data dari masing-masing kelas. Confusion matrix menampilkan dan membandingkan nilai aktual dan prediksi model yang digunakan untuk menghasilkan matriks evaluasi seperti accuracy, precision, recall, dan f1-score atau f-measure.

Tabel 2.1 *Confusion Matrix*

	N	Nilai Aktual								
iksi		Positive	Negative							
i Prediksi	Positive	TP	FP							
Nilai	Negative	FN	TN							

Seperti yang diilustrasikan pada Tabel 2.1 terdapat 4 nilai yang dihasilkan dalam tabel jika kasusnya 2 kelas, yaitu *true positive* (TP), *false positive* (FP), *false negative* (FN), dan *true negative* (TN).

Keterangan:

TP = jumlah data yang bernilai positif dan diprediksi benar positif

FP = jumlah data yang bernilai negatif tetapi diprediksi positif

FN = jumlah data yang bernilai positif tetapi diprediksi negatif

TN = jumlah data yang bernilai negatif dan diprediksi benar negatif

Akurasi untuk data 2 kelas dihitung dengan membagi jumlah data bernilai positif yang diprediksi positif dan data bernilai negatif yang diprediksi negatif dengan jumlah seluruh data dalam data set.

$$Akurasi = \frac{TP + TN}{Jumlah \ Data}$$

Data kelas yang lebih dari 3, dihitung dengan data yang bernilai positif diprediksi positif dibagi dengan jumlah data.

$$Akurasi = \frac{TP}{Jumlah\ Data}$$

2.7. Penelitian Terkait dan Matriks Penelitian

Berdasarkan penelitian yang dikembangkan oleh Yolanda Natalia dan Rudiansyah pada 2021 dengan judul "Analisis Perbandingan Bunga Meihua dan Sakura Yang Terlihat Sama Tetapi Berbeda" yang diterbitkan oleh Jurnal Bahasa, Sastra, dan Budaya, telah membahas mengenai perbedaan antara Bunga Meihua dan Sakura, dimana kedua bunga tersebut memiliki persamaan dan sulit untuk dibedakan masyarakat umum. Solusi yang diusulkan penelitian ini adalah membuat perbandingan antara bunga Meihua dan bunga Sakura dengan metode deksriptif kualitatif dengan mendeskripsikan gambaran-gambaran dari suatu fenomena yang bersifat alamiah tanpa adanya rekayasa ataupun campur tangan dari manusia. Perbandingan deskriptif dan kualitatif sudah berhasil dilakukan.

Penelitian lain juga dilakukan oleh Andi Dadang Krismawan dan Eko Hari Rachmawanto, pada tahun 2022 dengan judul "Principal Component Analysis (PCA) dan K-Nearest Neighbor (KNN) Dalam Deteksi Masker Pada Wajah" yang diterbitkan oleh ISSN. Penelitian ini dilakukan atas dasar permasalahan penggunaan masker yang diharuskan menutup hidung dan mulut untuk menghambat pertumbuhan Covid-19. Dengan adanya himbauan memakai masker dalam waktu yang lama, sistem deteksi pengenalan wajah di area umum pun terganggu dan menjadi sulit dikenali. Dengan adanya permasalahan tersebut, proses pengenalan wajah yang dilakukan sistem menjadi terhambat karena penggunaan masker yang dipakai oleh setiap orang. Berdasarkan permasalahan tersebut solusi yang ditawarkan adalah dengan membuat sistem yang dapat mengidentifikasi citra wajah seseorang meskipun menggunakan masker. Penelitian ini menggunakan Metode Principal Component Analysis (PCA) dan K-Nearest Neighbor (KNN). Data yang digunakan berupa citra wajah yang menggunakan masker dan tidak bermasker. Kemudian dilakukan tahap prepocessing dengan melakukan cropping, penghapusan latar belakang citra, segmentasi dengan menggunakan metode thresholding, ekstraksi ciri dan terakhir mengklasifikasinya menggunakan KNN. Berdasarkan hasil pengujian sistem, didapatkan akurasi sebesar 90% dengan jumlah citra sebanyak 180 citra latih dan 20 citra uji.

Tabel penelitian terkait dan matriks penelitian yang dijadikan bahan rujukan untuk melakukan penelitian ini yaitu:

Tabel 2.2 Penelitian Terkait

No	Peneliti/Tahun	Judul	Masalah Penelitian	Metode/Algoritma	State of The Art /
NU	Tenenti/Tanun	Judui	Masaian i eneman	/Teknik/Model	Keterbaruan
1	Yahya, Indra	Penerapan PCA dan	Proses pengenalan wajah	Metode/Algoritma:	Meningkatkan nilai akurasi
	Gunawan, dan	KNN untuk	membutuhkan algoritma dan	PCA dan K-NN	terhadap pengenalan wajah
	Bambang	meningkatkan nilai	metode yang tepat dalam		berdasarkan nilai jarak dengan
	Harianto (2017)	akurasi pengenalan	meningkatkan daya jelajah		menggunankan kombinasi
		wajah	dan tingkat akurasi yang		algoritma K-NN dan PCA
			akan dihasilkan		
2	Sesilia Novita	Penerapan KNN	Banyaknya genus dan	Metode/Algoritma:	Penerapan algoritma PCA
	R, Prihastuti	untuk klasifikasi	varietas tanaman anggrek	KNN dan Euclidean	digunakan untuk
	Harsani, Arie	anggrek	yang berbeda beda	Distance	mengklasifikasikan karakter
	Qur'ania (2018)	berdasarkan	diimplementasikan ke dalam		morfologi daun, bentuk bunga,

		karakter morfologi	sebuah aplikasi agar mudah		bentuk sepal lateral, warna
		daun dan bunga	untuk dikenali		sepal lateral, bentuk sepal
					dorsal, bentuk petal, warna
					petal, bentuk ujung bibir, dan
					corak bunga
3	Husaini,	Algoritma PCA	PCA merupakan salah satu	Metode/Algoritma:	Mereduksi dimensi data-data
	Huzaeni, dan	dalam pemrosesan	Teknik yang ada dalam	PCA, KNN, dan	dari sinyal EKG dengan
	Fahmi (2018)	sinyal	statistic dan merupakan	Naive Bayes	menggunakan algoritma PCA
		electrokardiogram	metode non parametrik untuk		dan akurasi klasifikasi sinyal
			mengekstraksi informasi-		dengan metode KNN dan
			informasi yang bersesuaian		Naïve Bayes
			dari sekumpulan data yang		
			masih diragukan		

4	Andi Yulia	Penerapan	Jumlah dokumen berita	Metode/Algoritma:	Klasifikasi dokumen berita
	Muniar, Pasnur,	algoritma KNN	online yang meningkat	KNN	online secara otomatis dengan
	dan Kiki Ria	pada	dengan pesat tidak dapat		menggunakan metode KNN
	Lestari (2020)	pengklasifikasian	dikelompokkan secara		
		dokumen berita	efisien oleh manusia karena		
		online	banyaknya data tersebut.		
5	Yahya dan	Penerapan	"Lombok Vape On"	Metode/Algoritma:	Mengkasifikasikan hasil
	Winda Puspita	Algoritma KNN	memiliki konsumen yang	KNN	penjualan dari "Lombok Vape
	Hidayanti	untuk klasifikasi	cukup banyak sehingga		On" untuk mengetahui
	(2020)	efektifitas penjualan	pendapatan yang didapat		efektifitas penjualan
		vape (rokok	tentu banyak, akan tetapi		perbulannya agar toko tersebut
		elektrik) pada	pendapatannya tidak		megetahui pasang surut
		"Lombok Vape On"	menentu dan tidak dapat		pemasukan yang di dapat

			diprediksi dengan baik setiap		dengan mengimplementasikan
			bulannya		metode KNN
6	Nofia Sari dan	Implementasi	Bunga anggrek memiliki	Metode/Algoritma:	Implementasi algoritma KNN
	Resty	Algoritma KNN	banyak jenis yang mungkin	KNN	untuk membedakan anggrek
	Wulanningrum	untuk identifikasi	banyak masyarakat hanya		dari kelopak bunga yang
	(2021)	citra bunga anggrek	mengetahui jenisnya dari		dimilikinya
			warnanya saja. Banyak yang		
			kurang mengamati tentang		
			bunga anggrek itu sendiri		
7	Mainia	Komparasi	Pemanfaatan tanaman	Metode/Algoritma:	Megklasifikasikan citra
	Mayasari,	klsifikasi jenis	rimpang merupakan	PCA, SVM, KNN,	tanaman rimpang dengan
	Dadang	tanaman rimpang	alternatif lain sebagai obat	dan Decision Tree	menggunakan metode PCA,
	Iskandar	menggunakan PCA,	herbal saat pandemi covid-		SVM, KNN, dan Decision
	Mulyana, dan		19, tetapi masyarakat awam		Tree

	Mesra Betty Yel	SVM, KNN dan	sering keliru saat		
	(2022)	Decision Tree	membedakan rimpang		
			tersebut dikarenakan		
			memiliki kemiripan bentuk		
8	Permana Putra,	Analisis Metode	Analisis metode KNN	Metode/Algoritma:	Mengimplementasikan metode
	Akim M H	KNN dalam	terhadap klasifikasi data iris	KNN	KNN terhadap data iris bunga
	Pardede, dan	klasifikasi data iris	bunga dari UCI machine		untuk mengetahui tingkat
	Siswan	bunga	learning		akurasi yang dihasilkan
	Syahputra				
	(2022)				
9	Rini Nuraini	Klasifikasi jenis	Salah satu alat elektronika	Metode/Algoritma:	Mengembangkan sistem
	(2022)	kapasitor	yang penting adalah	KNN dan PCA	pengolahan citra digital untuk
		menggunakan	kapasitor. Kapasitor atau		klasifikasi jenis transitor
		kombinasi	yang biasa disebut		

		algoritma KNN dan	kondensator memilki banyak		dengan menerapkan metode
		PCA	jenis. Namun, beberapa		KNN dan PCA
			orang belum mengetahui		
			tentang jenis-jenis kapasitor		
			ini		
10	Fiqih Ismawan	Hasil Ekstraksi	Ekstraksi ciri menggunakan	Metode/Algoritma:	Hasil citra wajah yang telah
	(2015)	Algoritma <i>Principal</i>	algoritma PCA untuk	PCA	diekstraksi menggunakan
		Component	pengenalan wajah		algoritma PCA tersebut
		Analysis (PCA)			nantinya akan dibandingkan
		untuk Pengenalan			dengan citra wajah baru
		Wajah			sebagai citra wajah yang
		dengan Bahasa			akan dites apakah mempunyai
		Pemograman Java			kemiripan atau hampir mirip
		Eclipse IDE			untuk dikenali oleh sistem

	Yolanda Natalia	Analisis	Perbandingan perbedaan	Metode/Algoiritma:	Membuat perbandingan
11	dan Rudansyah	Perbandingan	bunga anggrek dan bunga	Deskriptif dan	dengan metode deskriptif dan
	(2021)	Bunga Meihua dan	meihua	Kualitiatif	kualitatif mengenai perbedaan
		Sakura Yang			bunga meihua dan sakura
		Terlihat Sama			
		Tetapi Berbeda			
	Yessi	Klasifkasi Gambar	Analis metode KNN	Metode/Algoritma:	Mengembangkan sistem
12	Yunitasari	Menggunakan	terhadap perbedaan variasi	KNN	pengolahan citra digital untuk
	(2020)	Metode K-Nearest	jeruk di Indonesia		klasifikasi jenis jeruk dengan
		Neighbor			menerapkan metode KNN

13	Andi Danang	PCA dan KNN	Penggunaan masker	Metode/Algoritma:	Mengimplementasikan metode
	Krismawan dan	dalam deteksi	mengakibatkan wajah	PCA dan KNN	PCA dan KKN untuk
	Eko Hari	masker pada wajah	seseorang sulit dikenali oleh		mendeteksi pengguna masker
	Rachmawanto		sistem keamanan pada		yang nantinya akan berguna
	(2022)		penggunaan fitur face		bagi satgas covid-19 yang
			recognition		memantau masyarakat untuk
					selalu patuh dalam aturan
					penggunaan masker
14	Asahar Johar	Implementasi	Implementasi Metode KNN	Metode/Algoritma:	Mengembangkan sistem
	dan Delfi	Metode (KNN) dan	dan SAW dalam pembuatan	KNN dan SAW	pendukung keputusan untuk
	Yanosma	(SAW) Dalam	sistem pengambilan		membantu pengambilan
	(2016)	Pengambilan	keputusan seleksi		keputusan seleksi penerimaan
		Keputusan Seleksi	penerimaan anggota		anggota Paskibra
			Paskibraka		

		Penerimaan			
		Anggota Paskibraka			
15	Andi Danang	PCA dan KNN	Penggunaan masker	Metode/Algoritma:	Mengimplementasikan metode
	Krismawan dan	dalam deteksi	mengakibatkan wajah	PCA dan KNN	PCA dan KKN untuk
	Eko Hari	masker pada wajah	seseorang sulit dikenali oleh		mendeteksi pengguna masker
	Rachmawanto		sistem keamanan pada		yang nantinya akan berguna
	(2022)		penggunaan fitur face		bagi satgas covid-19 yang
			recognition		memantau masyarakat untuk
					selalu patuh dalam aturan
					penggunaan masker

Tabel 2.3 Matriks Penelitian

No.	Nama				Metode	ę		Program	Objek	Ekstraksi		
110.	Peneliti	PCA	SVM	LBP	KNN	k-Means	Lainnya			Bentuk	Warna	Tekstur
1	Yahya, Indra Gunawan, dan Bambang Harianto (2017)	√			√			-	Wajah	√		
2	Sesilia Novita R, Prihastuti				√		Euclidean Distance		Anggrek	V	V	

		1		I					I	
	Harsani,									
	Arie									
	Qur'ania									
	(2018)									
	Husaini,									
3	Huzaeni,		$\sqrt{}$		Naïve	-	Sinyal	$\sqrt{}$		
	dan Fahmi		•		Bayes		2 333 33	·		
	(2018)									
4	Andi Yulia									
	Muniar,									
	Pasnur, dan		,					ı		
	Kiki Ria		$\sqrt{}$			PHP	Dokumen	$\sqrt{}$	-	-
	Lestari									
	(2020)									

5	Yahya dan Winda Puspita Hidayanti (2020)			V		-	Vape	-	-	-
6	Nofia Sari dan Resty Wulanningr um (2021)	V		V		Matlab	Anggrek	√	√	V
7	Mainia Mayasari, Dadang Iskandar Mulyana,	V	√	V	Decision Tree	-	Tanaman Rimpang	V	√	V

	dan Mesra Betty Yel (2022)									
8	Permana Putra, Akim M H Pardede, dan Siswan Syahputra (2022)			√		_	Iris Bunga	_	√	-
9	Rini Nuraini (2022)	V		V		Matlab	Kapasitor	√	$\sqrt{}$	-

10	Fiqih			,				,		
	Ismawan(20			$\sqrt{}$		Java	Wajah	$\sqrt{}$	-	-
	15)									
11	Yolanda				Deskriptif					
	Natalia dan									
	Rudansyah				dan	-	Bunga	$\sqrt{}$	-	-
	(2021)				Kualitatif					
12	Yessi									
	Yunitasari			$\sqrt{}$		-	Gambar	\checkmark	\checkmark	
	(2020)									
	Andi									
	Danang									
13	Krismawan	$\sqrt{}$		$\sqrt{}$		-	Wajah	$\sqrt{}$	-	$\sqrt{}$
	dan Eko									

	Hari									
	Rachmawan									
	to (2022)									
	Asahar									
	Johar dan									
14	Delfi			$\sqrt{}$	SAW	-	-	-	-	-
	Yanosma									
	(2016)									
	Andi									
	Danang									
15	Krismawan	$\sqrt{}$		$\sqrt{}$		-	Wajah	$\sqrt{}$	-	$\sqrt{}$
	dan Eko									
	Hari									

	Rachmawan to (2022)									
16	Vini Rosyanti (2022)	V		V		-	Bunga	V	V	-

Berdasarkan penelitian-penelitian sebelumnya yang membahas mengenai metode *K-Nearest Neighbor* dan *Principal Component Analysis* mengimplementasikan kasus yang berbeda-beda, salah satunya adalah mendeteksi citra wajah, bunga, dokumen, transistor, dan lain sebagainya. Perbedaan penelitian ini dengan penelitian yang sebelumnya adalah akan diterapkannya klasifikasi menggunakan PCA dan KNN dalam pembuatan sistem pengolahan citra perbedaan bunga meihua dan sakura.

Hasil dari penerapan metode PCA dan KNN yang dilakukan dapat dianalisa tingkat akurasi yang dihasilkan lebih baik ataupun malah kurang dari penelitian sebelumnya.