e_Performance_and_Scalability
_In_Microservices-
Based_Systems.pdf

Submission date: 16-Feb-2023 09:21PM (UTC+0700)

Submission ID: 2015651300

File name: e_Performance_and_Scalability_in_Microservices-Based_Systems.pdf (823.7K)
Word count: 4178

Character count: 23999

2022 International Conference Advancement in Data Science, E-learning and Information Systems (ICADEIS) | 978-1-6654-6387-4,/22/531.00 ©2022 |EEE | DOI: 10.1109/ICADEIS56544.2022.1003 7390.

2022 International Conference Advancement in Data
Science, E-learning and Information Systems (ICADEIS)

978-1-6654-6387-4

Event-Driven Architecture to Improve Performance
and Scalability in Microservices-Based Systems

2
1** Alam Rahmatulloh
Department of Informatics
Siliwangi University
Tasikmalaya, Indonesia
alam@unsil.ac.id

2" Fuji Nugraha
Department of Informatics
Siliwangi University
Tasikmalaya, Indonesia
Sfujinugrahal 6@gmail.com

3™ Rohmat Gunawan
Department of Informatics
Siliwangi University
Tasikmalaya, Indonesia
rohmatgunawan(@unsil.ac.id

4" Jrfan Darmawan
Department of Information System
Telkom University
Bandung, Indonesia
irfandarmawan(@telkomuniversity.ac.id

Abstract—The microservice architectural style can replace
the monolithic architecture because of the flexibility to adapt to
changing technologies and helps to better organize the
development team. However, in its implementation there are
still problems when communication between services in
microservices uses HTTP synchronous or based on API-Driven.
In addition, scalability and performance need to be considered
in a microservice architecture. The solution offered to these
problems is to apply container technology which is integrated
with Event-Driven Architecture (EDA) (asynchronous) to
handle internal communication between microservices. So that
the results of this study can overcome the problems of scalability
and performance in microservices. EDA response time is faster
with a percentage increase of 19.18%, as well as a lower EDA
error rate of 34.40%, although EDA CPU usage is higher with a
percentage decrease of 8.52% compared to API-Driven
Architecture. EDA uses more CPU resources.

Keywords—container technology, docker, event-driven

architecture, kubernetes, microservices

I. INTRODUCTION

Experts state that currently the world has erffired the
Industrial 4.0 era. which has the nature of wvolatility,
uncertainty, complexity, ambiguity (VUCA), namely the
state of the world with the nature of rapid change, lack of
predictability, the absence of a causal chain, and the blurring
of reality [1]-{3]. This has an impact on the realm of
technology, namely how to create a system architecture that
has good capabilities and high scalability.

The microservice architecture is gaining attention from the
industry because of the capabilities it offers in optimizing
Bstem architecture. This is supported by the fact that
according to the International Data Corporation (IDC) by the
end of 2021, 80% of cloud-based applications will be
developed using a microservice architecture [4]. The
microservice architectural style can replace the monolithic
architecture because of its flexibility to adapt to technological
changes and help better organize the development team [5].
In a microservice architecture, services can stand
independently, so the development carried out by a team on
one service will not affect other services. Many large
companies have developed their applications towards

978-1-6654-6387-4/22/$31.00 ©2022 IEEE

microservice architectures such as Netflix, Spotify, Amazon,
LinkedIn, SoundCloud and other companies [6].

The microservice architecture with the various advantages
it offers, there are still some problems in its implementation
including: frequent communication between services in
microservices via synchronous HTTP can reduce system
performance [4]. Synchronous HTTP communication is a
communication that is usually done by microservices with an
API-driven architecture (API-Driven Architecture) [7]. In
addition, scalability and performance need to be considered
in the microservice architecture [8].

Several solutions to deal with scalabifffij and performance
issues in microservice architectures have been tried in
Bcvious research including: the use of containers which
provide an easy way to scale operations by creating more
copies of the service, can help deal with scalability issues [9],
and elasticity [6]. Docker is a representative technology that
applies contamnerization techniques, has lightweight
characteristics, can help and run many microservices which
contribute to higher resource utilization, so as to improve
microservice performanc@@J10]. Apart from that, the
experimental comparison of RESTful API and RabbitMQ
perforfBce analysis on microservice web applications
shows that, when a large number of users send requests to the
B application at the same time RabbitMQ is more stable
than the REST API communication method [11]. Event-
Driven can beEpplied as a way of communicating between
microservices, when there is a large volume of data that needs
to be processed and when no response is expected [12].

In this study, container technology will be tried to be
applied to a microservice architecture that is integrated with
an Event-Driven Architecture (event-based architecture) to
handle internal communication, so that it can overcome
scalability and performance problems in microservices.

II. THE MATERIAL AND METHOD

A. Microservices

Microservices or microservices can be interpreted as a
collection of small independent services or processes that
usually communicate to form complex applications [13]. The
development carried out by the development team on a

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 11,2023 at 13:55:57 UTC from IEEE Xplore. Restrictions apply.

microservice will not affect other services because of its
independent nature. In contrast to monolithic ardBjtectures,
microservices encourage independent deployment and ¢ be
developed using different technology stacks [14]. Each
microservice is built around a business capability, runs in its
own process, and communicates with other microservicdflh
the application through lightweight mechanisms. The
microservice architectural style can be seen as a natural
extension of service oriented architecture (SOA), which
emphasizes self-management or self-service, and is
lightweight [15].

B. Steganography

Containers can be defined as lightweight operating
systems that @@n work directly inside the host operating
system [16]. Containerization wraps the application code
along with the associated configuration files such as libraries
and all dependencies needed to run the application.
Containers are abstracted from the host operating system,
thus, being portable and self-contained that can run on
miltiple platform [17]. Many service providers have adopted
it for a number of reasons including: (1) to reduce complexity
when using microservices; (2) to easily scale, remove, and
deploy parts of a system or application; (5) to increase
flexibility by using different frameworks and tools; (4) to
improve the overall scalability; and (5) increase system
resilience [18]. One of the popular application-orifited
container approaches to containers is Docker. Docker relies
on Linux kernel features, such as namespaces and control
groups.

The Docker container encapsulates the application and its
Ef@tware dependencies, and the encapsulated application can
run on a different Linux machine than the Docker machine
[19]. In making the container, a Docker Image is needed
which includes library data, commands, and other application
needs. Docker images can be created through a configuration
file called a Dockerfile.

Another approf@h can be done effectively using
Kubernetes which 1s an open-source platform for managing
containerized applications including managing workloads
and services. Kubernetes is designed to automate
deployment, scaling, and operation of containerized
applications [17] and has capabilities for portability and
extensibility [20]. In its implementation Kubernetes can be
assisted by Skaffold which is a command-line tool for
handling workflows, building, pushing, and deploying
applications or services. Scaffold can be applied to local or
remote Kubernetes clusters during application development
[21].

Containers can be defined as lightweight operating
systems that @n work directly inside the host operating
system [16]. Containerization wraps the application code
along with the associated configuration files such as libraries
and all dependencies needed to run the application.
Containers are abstracted from the host operating system,
thus, being portable and self-contained that can run on
mifitiple platform [17]. Many service providers have adopted
it for a number of reasons including: (1) to reduce complexity
when using microservices; (2) to easily scale, remove, and
deploy parts of a system or application; (5) to increase
flexibility by using different frameworks and tools; (4) to
improve the overall scalability; and (5) increase system

resilience [18]. One of the popular application-orffited
container approaches to containers is Docker. Docker relies
on Linux kernel features, such as namespaces and control
groups.

The Docker container encapsulates the application and its
Efftware dependencies, and the encapsulated application can
run on a different Linux machine than the Docker machine
[19]. In making the container, a Docker Image is needed
which includes library data, commands, and other application
needs. Docker images can be created through a configuration
file called a Dockerfile.

Another approfgh can be done effectively using
Kubernetes which is an open-source platform for managing
containerized applications including managing workloads
and services. Kubernetes is designed to automate
deployment, scaling, and operation of containerized
applications [17] and has capabilities for portability and
extensibility [20]. In its implementation Kubernetes can be
assisted by Skaffold which is a command-line tool for
handling workflows, building, pushing, and deploying
applications or services. Scaffold can be applied to local or
remote Kubernetes clusters during application development
[21

C. Event-Driven Architecture (EDA)

Event-Driven Architecture (EDA) refers to microservice
systems that are loosely coupled and exchange information or
data with each other through publish and listen events. EDA
allows information to be absorbed into an event-driven
ecosystem and then broadcast to the listening service or the
service that will receive the event [22]. EDA communicates
using message events and works asynchronously, in contrast
to the API-Driven Architecture which communicates using
API calls and works synchronously [7]. In recent years, EDA
has been widely used in several domains such as network
mstruction detection, sensor nctwom stock market, fast
trading, realtime system control, healthcare monitoring,
mobile and wdfble computing. The main reason is that
EDA provides solutions for developing distributed systems
that facilitate high flexibility and concurrency [23].

Auth .
T Listen / Publish

Cloth -
- " . =—Listen / Publish—
/ﬂ\;\ Request » Service
I’_ [y Load Event Bi
AL AR nseBalancer R
“'\\U'J espo
- Stock | isten / Publish
Service

Sale

- .~ =—Listen / Publish—
Service

Fig. 1. Event-Driven Architecture Communication Process in
Microservice
Fig. 1. describes the event-flow process, that when a client
from outside the microservice ecosystem makes a request, it
will be forwarded by the Load Balancer and directed to the
destination service, where the related service will process the

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 11,2023 at 13:55:57 UTC from IEEE Xplore. Restrictions apply.

request and publish the event to the event-bus where other
services do it. The listen event will receive event notifications
to participate in processing requests or synchronizing data.
After the request has been processed, it will return a response
to the client. Event-bus creation can be assisted using Apache
Katka [22], RabbitMQ [11], or NATS Streaming.

D. Methodology

Fig. 2. is a research stage starting from the literature study
process, the application stage (RAD Methodology), the
measurement stage, and drawing conclusions.

[Start Study of Literature]

v
/ Stages of Application \\

Planning - Construction Cutover

\ Rapid Application Development Methodology /
[Measurament Stage]—D[

Fig. 2. Research Methodology

Finish]

1.1. Study of literature

At this stage, learn all things related to Microservice,
Containerization, and Event-Driven Architecture from
various library sources in the form of books, journals,
research reports, theses, and theses that have been done as
well as the results of library searches on the internet.

1.2. Stages of Application (RAD Methodology)

The implementation stages in this research use the Rapid
Application Development (RAD) Methodology which has
four stages, namely planning, system design, construction,
and cutover.

1) Planning

At this stage, data flow planning is carried out,
development and application of architecture to applications,
including planning for software development requirements
such as programming languages, tools, libraries, frameworks,
and other resources.

TABLE L SOFTWARE ARCHITECTURE AND SOFTWARE NEEDS
Name Version Description
Docker Latest Application oriented container
Kubernetes 1.22.2 Container orchestrator
Skaffold v2beta2() Kubernetes support
NATS Streaming 0.22 Event bus
Typescript 444 Programming languange
Node.js 17.1.0 Runtime environment
Express.js 4.17.1 App framework
MongoDB 5.0 Database
Jest 27.1.0 Testing framework
Stan.js 03.2 Client communication tool

2) System Design

System Design is the stage of designing the system
architecture in accordance with the planning stages that have
been carried out previously. Architectural design will be
carried out using diagrams.net which is a tool for creating
data flows, wireframes, UML and so on.

3) Construction

Construction is the construction stage in accordance with
the system design stage. In addition, at this stage testing is
also carried out on the application as well as communication
between services, if there are still discrepancies, you can
return to the system design stage and then return to the
construction stage. This is done until it 1s in accordance with
the previous planning stage.

4) Cutover

This stage is the final stage where the system architecture
has been running well and in accordance with the initial
planning. In this study, if the system architecture has been
implemented, measurements will be made for research needs.

1.3. Measurement Stage

At this stage, measurements will be made by evaluating the
performance of the implemented architecture. Measurements
taken include CPU usage [17] in milliseconds when
processing requests from clients, response time in
milliseconds when handling a number of requests from
clients, and error rate in percentage [11] when handling a
number of requests beyond the system's capabilities. The
measurement stage is assisted by using JMeter to determine
the results of the response time and error rate, and assisted by
the process.cpuUsage() API from Node,js to determine the
results of CPU usage.

III. RESULT AND DISCUSSION

A. System Design

This research adopts a simple business process from a
fabric store information system in the warehousing section
until the goods are sold. Fig. 4. describes a system design that
defines 4 main services Auth, Cloth, Stock, and Sale, as well
as | additional service NATS Streaming (event-bus). Each
main service is equipped with a configuration to connect to
the database which in this case uses MongoDB. Each service
has tasks including: Auth to handle all user authentication
activities and management of users who can access the
system, Cloth to handle the entire process of making fabric
metadata, grouping fabrics, and pricing each fabric, Stock
managing handle the entire fabric calculation process, both in
the stock-in process (stock in) and during the stock-out
process (out of stock/sold fabrics), and Sale handles activities
when the fabric is sold or the fabric is issued. In addition,
NATS Streamer acts as the main bridge in the communication
process between the 4 main services, both the publishing
process (sending data) and the listening process (receiving
data).

B. Measurement Mechanism

Measurements will be made on applications that have been
built and the related communication architecture has been
applied. The measurement process itself will compare the

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 11,2023 at 13:55:57 UTC from IEEE Xplore. Restrictions apply.

Event-Driven Architecture with the API-Driven Architecture
to see the amount of performance improvement. The
application of the API-Driven Architecture tf}the
applications that were built was not documented in the
research, considering that the focus of the research conducted
was on the Event-Driven Architecture. Fig. 3. describe the
API-Driven Architecture created.

, Auth
Service
Client
| | Cloth
Service
Reguest—» e
Response |Balancer
Stock
- |
JMeter Service
or
Postman
Sale
> «
Service

Fig. 3. APl-Driven Architecture Communication Process in Microservice

The measurement mechanism includes the preparation of
performance measurements for each measurement parameter,
namely response time, error rate, and CPU usage. For each
parameter, the measurement is carried out with the same
number of requests, namely 100, 200, 300, 400, and 500).
Measurements are carried out on one of the application
endpoints that have been built with the most complex criteria
when storing and processing data. The measurement
mechanism that will be applied applies to both Event-Driven

average response time and error rate. When measuring CPU
usage, you don't need a ramp-up period because it will run
indefinitely, in order to find out how much CPU usage is
when processing requests from users/clients.

Manjaro Linux
Auth | .
; Listen / Publish Kas.wurlﬂ
Auth = N-:TS-F-“"]
MongoDB Auth PV 1
Clr_l“l = Listen / Publish—=
Request.s Clath NATS
Ingress Mon,
) L goDB
) fesponse, Ngin CIOIhP‘U' Streamer
- 5'90“ ~—Listan / Publish—
Fostman :
Stock o
MongaDB. ™ stock PV| |
T LEGENDS
Cluster IP Srv
Sale |. Listen / Publish Deployment
H Pod
- : Persisten Volums
Sale [Router
MongoDB | | sale BV = Replicas

Fig. 4. System Design

The measurement stage uses JMeter to measure the
response time and error rate. In addition, setting up CPU
usage measurements programmatically uses the help of the
Node.js process.cpuUsage() APL

C. Benchmark Result

The measurement environment is exactly the same as the
application development environment and the application of
the architecture to the applications that have been built.
Measurements will be carried out on the Linux Manjaro
21.1.6 Pahvo operating system.

Architecture and API-Driven Architecture, so that both TABLEIIL. ENVIRONTMENT
architectures receive the same treatment when taking - —
measurements. tail Deseription
Operating | Manjaro 21.1.6 Pahvo (Linux)
. System
TABLE IL. RAMP-UP PERIOD
Kernel x86_64 Linux 5.10.70-1-MANJARO
Total Ramp-up Period (second) Disk 11(}G
R ouzst R Ti E Rat Cpu CPU AMD A4-9120 RADEON R3, 4 COMPUTE CORES
4 esponse Tlme rror Bate Usage 2C ¢ 2G @ 2x 2.25GHz
100 200 s (2 s/request) 100 s (1 s/request) - GPU AMD STONEY
200 800 s (4 s/request) 600 s (3 s/request) - RAM 8GB
300 2400 s (8 srequest) 1500 s (5 s/request) - The measurement results from the two architectures are
400 6400 3 (16 s/request) | 2800 3 (7 sirequest) - then presented in the form of tables and graphs, to see the
500 16000 s (32 s/request) 4500 s (9 s/request) -

The ramp-up period shows how long it takes to execute a
specified number of requests. For example, 100 requests must
be completed within 200 seconds, in the sense that 1 request
only has a maximum of 2 seconds to complete the process. If
it exceeds this time, the request process will be delayed and
will be completed after other requests. However, ifthere is no
time left for other requests, the request process is terminated
and will experience an error because the system is unable to
complete the request according to the specified ramp-up
period. The ramp-up period is only used when measuring

differences between the two. Afier that, the results presented
by the two architectures are calculated using the percentage
increase or decrease formula.

final value — initial value

percentage = initial value * 100%
TABLEIV. RESPONSE TIME RESULT
Total Request Event Driven API Driven Difference
100 2096 ms 2247 ms 151 ms
200 2905 ms 3852 ms 947 ms
300 3277 ms 3895 ms 618 ms
400 4433 ms 5215 ms 782 ms
S00 S80S ms 6859 ms 1054 ms
Average 3703.2 ms 4413.6 ms 710.4 ms

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 11,2023 at 13:55:57 UTC from IEEE Xplore. Restrictions apply.

Response Time (milliseconds)

100 200 300 400 500

+- Event Driven #-API Driven

Fig. 5. Response Time Result Line Chart

As shown in Table I1I and Fig. 5. In terms of response time
speed, Event-Driven Architecture outperformed API-Driven
Architecture by 19.18%. In measuring the error rate shown in
Table IV and Fig. 6. Event-Driven outperforms because it has
a lower error rate than API-Driven Architecture with an
increase of 34.40%. Although the CPU Usage measurement
as shown in Table V and Fig. 7. Event-Driven uses more CPU
resources than API-Driven Architecture with a decrease of
8.52%.

TABLE V. ERROR RATE RESULT
Total Event Driven API Driven Difference
Request
100 0% 0% 0.00%
200 7% 11 % 4.00%
300 1033 % 11,33 % 1.00%
400 10.50 % 9.25 % 1.25%
500 4% 11.20 % 7.20%
Average 6.37% 8.56% 2.19%
a
f Error Rate (%)
-
2
. - . .
» s
-
i L
B .
1
® -
0y wo 100 400 500
—#— Even! Drwves - APL Dvioen
Fig. 6. Error Rate Result Line Chart
a
CPU Usage (milliseconds)
§ oo
£ :
! A.00a
500 &
L.000 e
- 1] oo £ 400 500
. Peerd Drwen & AR Driven

Fig. 7. CPU Usage Result Line Chant

TABLE VL CPU USAGE RESULT

Total . : .
Request Event Driven API Driven Difference
100 86532 ms 814.76 ms 50.56 ms
200 1521.37 ms 156192 ms 150.51 ms
300 2265.83 ms 207135 ms 194.49 ms
400 2932.64 ms 2694.58 ms 238.05 ms
500 3721.51 ms 338690 ms 334.60 ms
Average 227297 ms 207932 ms 193.64 ms

IV. CONCLUSIONS

Based on the results of the research that has been done, it
can be concluded that the system was successfully built using
container technology which is integrated with the Event-
Driven Architecture on the Microservice architecture. In
addition, the application of container technology
(Kubernetes) can make it easier to scale services on a
Microservice architecture, both when scale-in and scale-out.

The amount of performance improvement when
implementing container technology that is integrated with the
Event-Driven Architecture is known through the
measurement process of the system that has been built
Measurement is done by comparing the Event-Driven
Architecture and API-Driven Architecture. From the
measurement results, it is known that the performance of the
Event-Driven Architecture is better than the API-Driven
Architecture with a number of requests (100, 200, 300, 400,
and 500) being carried out on the system simultancously.
From the results of the request, it can be seen that the Event-
Driven Architecture response time is faster with a percentage
mcrease of 19.18%, the error rate of Event-Driven
Architecture is lower with a percentage increase of 34.40%,
although CPU usage Event-Driven Architecture is higher with
a percentage decrease of 8.52%. compared to API-Driven
Architecture considering that Event-Driven Architecture uses
more CPU resources.

REFERENCES

[1] A. Nowacka and M. Rzemieniak, “The Impact of the VUCA
Environment on the Digital Competences of Managers in the
Power Industry,” Energies (Basel), vol. 15, no. 1, p. 185, Dec.
2021, doi: 10.3390/enl 5010185,

2] E. Simkova and M. Hoffmannova, “I mpact of VUCA
Environment in Practice of Rural Tourism,” Mar. 2021, pp.
746-757. doi: 10.36689/uhk/hed/2021-01-074.

[3] N. I Pearse, “Change Management in a VUCA World,” in
Visionary Leadership in a Twrbulent World, Emerald
Publishing Limited, 2017, pp. 81-105. doi: 10.1108/978-1-
78714-242-820171005.

[4] M. Waseem, P. Liang, and M. Shahin, “A Systematic
Mapping Study on Microservices Architecture in DevOps,”
Journal of Systems and Software, vol. 170, p. 110798, 2020,
doi: 10.1016/].j55.2020.110798.

[5] A. Balalaie, A. Heydarmoori, and P. Jamshidi Dermani,
“Microservices Architecture Enables DevOps: an Experience
Report on Migration to a Cloud-Native Architecture,” 5.2, pp.
1-13, 2016.

[6] P.DiFrancesco, P. Lago, and . Malavolta, “Architecting with
microservices: A systematic mapping study,” Jowrnal of
Systems and Software, vol. 150, pp. 77-97, 2019, doi:
10.1016/.j55.2019.01.001.

[7] E. K. Kannedy, “Event-Driven Architecture,” medium.com,
2018. hitps://medium.com/bliblidotcom-techblog/event-
driven-architecture-ef3a3 12 180ee (accessed Mar. 10, 2021).

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 11,2023 at 13:55:57 UTC from IEEE Xplore. Restrictions apply.

[8]

[9]

[10]

(1]

[13]

[14]

[15]

(18]

[17]

[18]

[19]

[20]

[21]

S. Li et al., “Understanding and addressing quality attributes
of microservices architecture: A Systematic literature review,”
Information and Soffware Technology, vol. 131, p. 106449,
2021, doi: 10.1016/j.infs0£.2020.106449.

D. Trihinas and G. Pallis, “DevOps as a Service : Pushing the

Boundaries of Microservice Adoption Taking the Pulse of

DevOps in the Cloud,” IEEE Computer Society, no. June, pp.
65-71, 2018.

H. Kang, M. Le, and S. Tao, “Container and microservice
driven design for cloud infrastructure DevOps,” Proceedings
- 2016 IEEE International Conference on Cloud Engineering,
[C2E 2016: Co-located with the Ist IEEE International
Conference on Internet-of-Things Design and
Implementation, IoTDI 2016, pp. 202-211, 2016, doi:
10.1109/IC2E.2016.26.

X. J. Hong, H. 5ik Yang, and Y. H. Kim, “Performance
Analysis of RESTful API and RabbitMQ for Microservice
Web Application,” 9th International Conference on
Information and Communication Technology Convergence:
ICT Convergence Powered by Smart Intelligence, ICTC 2018,
pp. 257-259, 2018, doi: 10.1109/ICTC.2018.8539409.

A, Akbulut and H. G. Perros, “Performance Analysis of

Microservice Design Patterns,” JEEE Internet Computing,
vol 23, no. 6, 19-27, 2019, doi:
10.1109/MIC.2019.2951094.
R. A. Putra, “Analisa Implementasi Arsitektur Microservoces
Berbasis Kontainer Pada Komunitas Pengembang Perangkat
Lunak Sumber Terbuka (OpenDayLight DevOps Community
)" Jurnal Sistem Infomasi Teknologi Informasi dan Komputer
(Just It} Universitas Bina Nusantara Magister Manajemen
Sistem Informasi Jakarta, pp. 150-162, 2018,

L. Baresi, M. Garriga, and A. De Renzis, “Microservices
identification through interface analysis,” Lecture Notes in
Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 10465 LNCS, pp. 19-33, 2017, doi: 10.1007/978-3-319-
67262-5 2.

1. Soldani, D. A. Tamburri, and W. J. Van Den Heuvel, “The
pains and gains of microservices: A Systematic grey literature
review,” Journal of Systems and Software, vol. 146, pp. 215
232, 2018, doi: 10.1016/j.jss.2018.09.082.

M. Fihri, R. M. Negara, and D. D. Sanjoyo, “Implementasi &
Analisis Performansi Layanan Web Pada Platform Berbasis
Daocker Implementation & Analysis of Web Service
Performance Based on Docker Platform,” vol. 6, no. 2, pp.
39964001, 2019.

L. P. Dewi, A. Noertjahyana, H. N. Palit, and K. Yedutun,
“Server Scalability Using Kubemetes,” TIMES-iCON 2019 -
2019 4th Technology Innovation Management and
Engineering Science International Conference, pp. 1-4, 2019,
doi: 10.110% TIMES-iCON47539.2019.9024501.

H. Khazaei, C. Bama, N. Beigi-Mohammadi, and M. Litoiu,
“Efficiency analysis of provisioning microservices,”
Proceedings of the International Conference on Cloud
Computing Technology and Science, CloudCom, vol. 0, pp.
261-268, 2016, doi: 10.1109/CloudCom.2016.0051.

M. Plauth, L. Feinbube, and A. Polze, “A performance survey
of lightweight viralization techniques,”™ Lecture Notes in
Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 10465 LNCS, pp. 34-48, 2017, doi: 10.1007/978-3-319-
67262-5_3.

T. Menouer, “KCSS: Kubemetes container scheduling
strategy,” Jowrnal of Supercomputing, vol. 77, no. 5, pp.
4267-4293, 2021, doi: 10.1007/s11227-020-03427-3.

K. P. Singh, “Easy Kubemetes development with Skaffold,”
dev.to, 2020. https://dev.to/karanpratapsingh/easy-
kubernetes-development-with-skaffold-2ic8 (accessed Now.
16, 2021).

[22]

[23)

G. Jansen and J. Saladas, “Advantages of event-driven
architecture,” Developer 1BM, 2020.
hitps://developer.ibm.com/technologies/messaging/articles/a
dvantages-of-an-event-driven-architecture/ (accessed Mar.
13, 2020).
5. Tragatschnig, S. Stevanetic, and U. Zdun, *Supporting the
evolution of event-driven service-oriented architectures using
change patterns,” Information and Software Technology, vol.
A no. March, pp- 133146, 2018, doi:
10.1016/].infs0f.2018.04.005.

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 11,2023 at 13:55:57 UTC from IEEE Xplore. Restrictions apply.

e_Performance_and_Scalability_in_Microservices-
Based_Systems.pdf

ORIGINALITY REPORT

19, 11« 17+ 11«

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Alam Rahmatulloh, Ricky Indra Gunawan, Irfan 20/
Darmawan, Randi Rizal, Biki Zulfikri Rahmat. ’
"Optimization of Hijaiyah Letter Handwriting
Recognition Model Based on Deep Learning",

2022 International Conference Advancement
in Data Science, E-learning and Information
Systems (ICADEIS), 2022

Publication

Alam Rahmatulloh, Bambang Tri Handoko, 20/
Rahmi Nur Shofa, Irfan Darmawan. "GeoJSON °
Implementation for Demographic and
Geographic Data Integration Using RESTful
Web Services", 2022 Seventh International
Conference on Informatics and Computing
(ICIC), 2022

Publication

Submitted to Telkom University 2%

Student Paper

Marcelo Amaral, Jorda Polo, David Carrera, 20/
lgbal Mohomed, Merve Unuvar, Malgorzata ’

Steinder. "Performance Evaluation of
Microservices Architectures Using
Containers", 2015 IEEE 14th International
Symposium on Network Computing and
Applications, 2015

Publication

dokumen.pub

Internet Source

2%

juti.if.its.ac.id

Internet Source

(K

Lily Puspa Dewi, Agustinus Noertjahyana,
Henry Novianus Palit, Kezia Yedutun. "Server
Scalability Using Kubernetes", 2019 4th
Technology Innovation Management and
Engineering Science International Conference
(TIMES-iCON), 2019

Publication

T

web.archive.org

Internet Source

(K

people.engr.ncsu.edu

Internet Source

T

Irfan Darmawan, Alam Rahmatulloh, Rohmat
Gunawan. "Web Service Modeling for
GraphQL Based College Data Service Access",
2022 International Conference Advancement
in Data Science, E-learning and Information
Systems (ICADEIS), 2022

T

Publication

Simon Tragatschnig, Srdjan Stevanetic, Uwe
Zdun. "Supporting the evolution of event-
driven service-oriented architectures using
change patterns", Information and Software
Technology, 2018

Publication

T

—
N

www.semanticscholar.org

Internet Source

(K

Irfan Darmawan, Alam Rahmatulloh, Husni <'I
: . . %
Mubarok, Rohmat Gunawan, Rezi Syahriszani.
"Real-time Communication Measurement on
Web Services in the Fingerprint Machine",
2019 IEEE International Conference on
Internet of Things and Intelligence System
(loTalsS), 2019
Publication
Jacopo Soldani, Damian Andrew Tamburri, <1 o
Willem-Jan Van Den Heuvel. "The Pains and °
Gains of Microservices: A Systematic Grey
Literature Review", Journal of Systems and
Software, 2018
Publication
Xian Jun Hong, Hyun Sik Yang, Young Han <1 %

Kim. "Performance Analysis of RESTful API
and RabbitMQ for Microservice Web
Application", 2018 International Conference

on Information and Communication
Technology Convergence (ICTC), 2018

Publication

"Service-Oriented and Cloud Computing", <1 o
Springer Science and Business Media LLC, ’
2017
Publication
linux-hardware.or

Internet Source g <1 %
acikbilim.yok.gov.tr

InternetSourcey g <1 %

Deepali Bajaj, Anita Goel, S. C. Gupta. <1

. . : . %
"GreenMicro: Identifying Microservices from
Use Cases in Greenfield Development", IEEE
Access, 2022
Publication
www.slideshare.net
20 Internet Source <1 %

Exclude quotes Off Exclude matches Off

Exclude bibliography On

