
2022 International Conference Advancement in Data

Science, E-learning and Information Systems (ICADEIS)
978-1-6654-6387-4

978-1-6654-6387-4/22/$31.00 ©2022 IEEE

Web Service Modeling for GraphQL

Based College Data Service Access

Irfan Darmawan

Department of Information System

Telkom University

Bandung, Indonesia

irfandarmawan@telkomuniversity.ac.id

Alam Rahmatulloh

Department of Informatics

Siliwangi University

Tasikmalaya, Indonesia

alam@unsil.ac.id

Rohmat Gunawan

Department of Informatics

Siliwangi University

Tasikmalaya, Indonesia

rohmatgunawan@unsil.ac.id

Abstract—The Higher Education Database or Pangkalan

Data Perguruan Tinggi (PDDIKTI) is a collection of data on the

implementation of higher education that is nationally

integrated. The data contained in the academic information

system of a university must be entered in PDDIKTI. The

PDDIKTI Feeder application is one of the services that can be

used by every university to help facilitate data input. The large

and varied data on the implementation of higher education is an

obstacle in the data input process into the PDDIKTI Feeder

application. The PDDIKTI Feeder application was developed

based on a Web Service with a REpresentational State Transfer

(REST) architecture. Web Service using REST Application

Programming Interface (API), when a request to an endpoint is

executed, it will get additional information that is not really

needed. This is because when you access the endpoint, you will

get all the data that was determined when the endpoint was

developed. So that another filtering stage is needed to separate

data that is not needed. The solution to overcome these problems

in this research is trying to apply GraphQL. Test scenarios are

created by setting up the syntax to access the PDDIKTI Feeder

before using GraphQL or using only REST and comparing after

implementing GraphQL. The experimental results show that

the response time of GraphQL is 20% greater than that of the

REpresentational State Transfer (REST). However, the file size

response of GraphQL is only 10% compared to REST.

Keywords—Feeder PDDIKTI, GraphpQL, REST, Web

Service

I. INTRODUCTION

The Higher Education Database or Pangkalan Data
Perguruan Tinggi (PDDIKTI) is a collection of data on the
implementation of higher education that is nationally
integrated. The data contained in the academic information
system of a university must be entered in PDDIKTI [1]. The
PDDIKTI Feeder application is one of the services that can be
used by every university to help facilitate data input. The data
input process through the PDDIKTI Feeder is easier and faster
than manual input through the application. Integration of local
information systems in universities can also be done with the
PDDIKTI Feeder application so that system performance is
more optimal [1]–[4]. However, the large and varied data on
the implementation of higher education is an obstacle in the
data input process into the PDDIKTI Feeder application [2].
The availability of a system that can support the
interoperability of the PDDIKTI Feeder with the Higher
Education information system is one solution to overcome
this.

Several experiments related to access to the PDDIKTI
Feeder application have been tried in previous research,
including: integration of an integrated academic information

system with the PDDIKTI Feeder [1] [2], development of
single page applications on academic information systems [3],
implementation of web services on student activity recording
on PDDIKTI feeders [4]. Experiments in research [1] [2] [3]
[4] only focus on implementing RESTful-based web services
used by the PDDIKTI Feeder Application.

The PDDIKTI Feeder application was developed based on
a Web Service with a REpresentational State Transfer (REST)
architecture. Web Service using REST Application
Programming Interface (API), when a request to an endpoint
is executed, it will get additional information that is not really
needed. This is because when you access the endpoint, you
will get all the data that was determined when the endpoint
was developed [5]. So that another filtering stage is needed to
separate data that is not needed.

One solution to overcome these problems is by using the
GraphQL approach. GraphQL is a new query language to
implement a Web Service-based software architecture. The
language is gaining momentum and is now used by large
software companies, such as Facebook and GitHub [6][7][8].
In its implementation, GraphQL only requires one specific
query that has determined its needs. The server will reply by
providing data in Java Script Object Notation (JSON) format
based on customized needs [5].

RESTful and GraphQL-based Web Service architecture
has interesting characteristics to study, because several
experiments showed varied results [9], [10]. Migration from
REST to GraphQL has also been attempted in several studies
[7], [11].

The purpose of this research is to model the GraphQL-
based web service architecture on Higher Education Data
services. Performance measurement of GraphQL and
RESTful-based web service implementation is the main focus
that will be studied in this research. The experiment was
carried out by accessing one of the endpoints of the PDDIKTI
Feeder using GraphQL and using RESTful. When conducting
experiments, several parameters such as: response time [12]
[13] [14] [15], CPU usage [14] [15], data size [14] [15] were
measured to determine the performance of the two
architectures.

II. RELATED WORK

Several experiments related to access to the PDDIKTI
Feeder application have been tried in previous research,
including: integration of an integrated academic information
system with the PDDIKTI Feeder [1] [2], development of
single page applications on academic information systems [3],
implementation of web services on student activity recording

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

Ad
va

nc
em

en
t i

n
Da

ta
 S

ci
en

ce
, E

-le
ar

ni
ng

 a
nd

 In
fo

rm
at

io
n

Sy
st

em
s (

IC
AD

EI
S)

 |
 9

78
-1

-6
65

4-
63

87
-4

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
AD

EI
S5

65
44

.2
02

2.
10

03
75

08

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 11,2023 at 11:38:13 UTC from IEEE Xplore. Restrictions apply.

on PDDIKTI feeders [4]. Experiments in research [1] [2] [3]
[4] only focus on implementing RESTful-based web services
used by the PDDIKTI Feeder Application.

The PDDIKTI Feeder application was developed based on
a Web Service with a REpresentational State Transfer (REST)
architecture. Web Service using REST Application
Programming Interface (API), when a request to an endpoint
is executed, it will get additional information that is not really
needed. This is because when you access the endpoint, you
will get all the data that was determined when the endpoint
was developed [5]. So that another filtering stage is needed to
separate data that is not needed.

One solution to overcome these problems is by using the
GraphQL approach. GraphQL is a new query language to
implement a Web Service-based software architecture. The
language is gaining momentum and is now used by large
software companies, such as Facebook and GitHub [6][7][8].
In its implementation, GraphQL only requires one specific
query that has determined its needs. The server will reply by
providing data in Java Script Object Notation (JSON) format
based on customized needs [5].

RESTful and GraphQL-based Web Service architecture
has interesting characteristics to study, because several
experiments showed varied results [9], [10]. Migration from
REST to GraphQL has also been attempted in several studies
[7], [11].

III. SYSTEM DESIGN

There are 5 main stages carried out in this research,
namely: system analysis, system architecture development,
identification of hardware & software requirements, coding,
implementation and measurement.

A. System Analysis

At this stage an analysis is carried out on the scope of the
current system architecture related to NeoFeeder PDDIKTI
and academic information systems contained in each
university.

B. System Architecture Development

The implementation of GraphQL is the main focus that
will be measured in the experiments in this study. GraphQL
will be placed between the Academic Information System and
NeoFeeder Client as shown in Figure 1.

GraphQL

Academic
Information

Systems

NeoFeeder Client NeoFeeder
Provider

(PDDIKTI)

INTERNET

(A) (B) (C)

Without GraphQL / {REST}

Fig. 1. Architecture System

C. Identification of Hardware and Software Requirements

At this stage, identification of the hardware and software
needed for implementation refers to the system architecture
that has been designed. The hardware specifications used are
shown in Table I.

TABLE I. HARDWARE SPECIFICATIONS USED

No Item Description

1 CPU CPU: Intel Core i5-6300U @ 4x 3GHz

2 Graphics GPU: Mesa Intel (R) HD Graphics 520 (SKL GT2)

3 Memory 8 GB

4 Storage 128GB

Apart from hardware, some software is also needed in the

experiments carried out in this study. The software
specifications used in the experiment are shown in Table II.

TABLE II. SOFTWARE SPECIFICATIONS USED

No Software Version

1 Operating System Manjaro 21.3.7 Ruah (Linux)

2 Kernel x86_64 Linux 5.10.136-1-MANJARO

3 NodeJS v14.18.2

4 NPM 6.14.15

5 ExpressJS 4.17.1

6 MongoDB 4.4.6

7 GraphQL 16.5.0

8 JMeter 5.5

D. Coding

At this stage, the program code (coding) for accessing the
PDDIKTI Feeder is made by implementing graphQL
compared to without using graphQL. Activities carried out at
this stage:

1. Determine the endpoint to be accessed. GetListdosen

is the endpoint that will be accessed in this experiment.

2. Experimental design

The experiment was carried out by accessing the
GetListdosen endpoint in two different ways,

namely by applying graphQL and without applying
graphQL. Endpoint access using graphQL is done by
creating a query along with the specific fields to be
accessed. The query is created in a graphQL compliant
format. Endpoint access without using graphQL is done
using a RESTful architecture. The experiment was
carried out repeatedly with different number of requests:
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000.

3. Measurement

Each endpoint call is recorded response times, the size of
the response data in JSON format, CPU usage time. The
experimental data are then inputted into tables and
presented in graphical form.

E. Implementations and Measurements

At this stage, the software is installed on the prepared
hardware. After the Server and Client are connected, then the
database connection configuration is carried out on the client
so that it is connected and the experimental process can be
carried out.

IV. EXPERIMENTAL RESULT

Based on the system architecture shown in Figure 1, there
are 3 main domains, namely: Academic Information System
(A), NeoFeeder Client (B), NeoFeeder Provider PDDIKTI
(C). In general, the main activities carried out at the
implementation stage are as follows: first, access the
PDDIKTI Neo Feeder Provider Web Service. This is done
from NeoFeeder Client (B) to Neo Feeder Provider PDDIKTI
(C) via the internet. The second stage, access the Web Service
from the Academic Information System to the NeoFeeder

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 11,2023 at 11:38:13 UTC from IEEE Xplore. Restrictions apply.

Client. This activity is the main focus carried out in research,
consisting of two ways: by applying GraphQL and without
using GraphQL.

A. Access PDDIKTI Neo Feeder Provider Web Service

The initial stage begins with the creation of program code
to access the Neo Feeder Provider PDDIKTI web service. This
is done to ensure each service can be accessed and used. The
snippet of the API source code for accessing the PDDIKTI
Neo Feeder Provider web service is shown in Figure 2.

import axios from 'axios';

import PddiktiToken from './models/pddikti-

token.js';

const buildConfig = (payload) => ({

 url: process.env.PDDIKTI_API_URL, method:

'post',

 headers: { "Content-Type": "application/json",

},

 data: JSON.stringify(payload)

})

const getTokenRequest = async () => {

 const config = buildConfig({

 act: 'GetToken',

 username: process.env.PDDIKTI_USERNAME,

 password: process.env.PDDIKTI_PASSWORD,

 })

 try {

 const { data: { error_code, error_desc, data

} } = await axios(config);

 if (error_code === 0) {

 const pddiktiToken = new PddiktiToken({

value: data.token });

 await pddiktiToken.save();

 } else {

 throw new Error(error_desc + ` [error code

${error_code} : PDDIKTI]`);

 }

 } catch(err) {

 console.log(err);

 }

}

const pddiktiApi = async (payload) => {

 const existingPddiktiTokens = await

PddiktiToken.find().countDocuments();

 if (!existingPddiktiTokens) {

 await getTokenRequest();

 }

 const pddiktiToken = await

PddiktiToken.findOne().lean();

 const config = buildConfig({...payload, token:

pddiktiToken ? pddiktiToken.value : 'empty'});

 try {

 const { data } = await axios(config);

 const { error_code, error_desc } = data;

 if (error_code === 0) {

 return data;

 } else if (error_code === 100) {

 await

PddiktiToken.findByIdAndRemove(pddiktiToken._id)

;

 return pddiktiApi(payload);

 } else {

 throw new Error(error_desc + ` [error code

${error_code} PDDIKTI]`);

 }

 } catch (err) {

 console.log('Something went wrong:

pddiktiApi Function PDDIKTI');

 }

}

export default pddiktiApi;

Fig. 2. API Source Code Snippets for PDDIKTI Neo Feeder Provider Web

Service Usage

Figure 2 shows a snippet of the API source code to access
the Neo Feeder Provider PDDIKTI web service.
Authentication of usernames, passwords, and getting tokens is
done at this stage. The next step is to access web services from
the Academic Information System to the NeoFeeder Client,
which is the main focus of this research, in two ways: by
applying GraphQL and without using GraphQL.

B. Access PDDIKTI Feeder without GraphQL

import pddiktiApi from './pddikti-api.js';

const app = express();

app.use('/pddikti/:action', async () => {

 const cpuUsageBefore = cpuUsage();

 const { action } = req.params;

 try {

 const { data: docs } = await pddiktiApi({ act:

action })

 const cpuUsageAfter = cpuUsage(cpuUsageBefore);

 res.status(200).send({

 message: 'Get pddikti data successfully',

 data: docs,

 cpuUsage: cpuUsageAfter,

 })

 } catch (err) {

 next(err);

 }

});

Fig. 3. Snippet of Neo Feeder API call source code without GraphQL

C. Access the PDDIKTI Feeder with GraphQL

import pddiktiApi from './pddikti-api.js';

const schema = buildSchema(`

 type Query {

 message: String

 }

 type CpuUsage {

 user: Int

 system: Int

 }

 type PDDIKTI {

 data: String

 cpuUsage: CpuUsage

 }

 type Mutation {

 pddikti(action: String): PDDIKTI

 }

`)

const root = {

 message: () => 'Hello World!',

 pddikti: async ({ action }) => {

 const cpuUsageBefore = cpuUsage();

 try {

 const { data } = await pddiktiApi({ act:

action });

 const cpuUsageAfter =

cpuUsage(cpuUsageBefore);

 return {

 data: JSON.stringify(data),

 cpuUsage: cpuUsageAfter

 };

 } catch(err) {

 console.log(err);

 }

 }

}

const app = express();

app.use('/graphql', graphqlHTTP({

 schema,

 rootValue: root,

 graphiql: true,

}));

Fig. 4. Snippet of Neo Feeder API call source code with GraphQL

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 11,2023 at 11:38:13 UTC from IEEE Xplore. Restrictions apply.

Figures 3 and 4 show the source code snippets for
accessing the Neo Feeder service, we can see there is a slight
difference in access and programming. By using GraphQL we
can insert queries so that the data response can be as desired.
Meanwhile, without using GraphQL, there is direct access to
the services available from Neo Feeder by using the end-point
we want.

D. Data Response

1. Without GraphQL

URL: http://localhost:3000/pddikiti/GetListdosen

Result:

{

 "message": "Get pddikti data successfully",

 "data": [

 {

 "id_dosen": "dcb7791f-0346-4901-

8edc-014a6986ab7f",

 "nama_dosen": "PENGKI IRAWAN",

 "nidn": "0016118601",

 "nip": "198611162015041001",

 "jenis_kelamin": "L",

 "id_agama": 1,

 "nama_agama": "Islam",

 "tanggal_lahir": "16-11-1986",

 "id_status_aktif": "1",

 "nama_status_aktif": "Aktif"

 },

 {

 "id_dosen": "2ecfed60-77be-48e7-

bc35-016dd3a6369b",

...

Fig. 5. Data Response without GraphQL

The results of the experiment in Figure 5 we can see that
without the use of GraphQL, all data on the GetListDosen end-
point including all its attributes will appear. This results in a
lot of data that we don't need but the server still sends it. In
addition to data, there are many other things that affect the
speed of response and use of large resources.

2. With GraphQL

Unlike the case with the use of GraphQL in Figure 7, we
can see that the use of queries is able to summarize the data
that is really desired. In addition, the data sent, the speed of
response and the use of resources are lighter. Another
advantage of GraphQL is that if we need data from several
end-points, then the request and response can only be done
once in one action. It's different without the use of GraphQL,
which means we have to make several requests at each desired
end-point. An illustration of the comparison of the use of
GraphQL can be seen in Figure 6.

Fig. 6. Illustration of Comparison of Data Access Process Using and Not
Using GraphQL

In the illustration in Figure 6 we can see that using REST
without GraphQL means retrieving multiple resources
requires multiple queries. In contrast to the use of GraphQL,
it means that a single query restricts multiple resources.

URL: http://locahost:4000/graphql

Query:

mutation {

 pddikti(action: "GetListDosen") {

 id_agama

 id_dosen

 id_status_aktif

 jenis_kelamin

 nama_agama

 nama_dosen

 nama_status_aktif

 nidn

 nip

 tanggal_lahir

 }

}

Result:

{

 "data": {

 "pddikti": [

 {

 "id_agama": 1,

 "id_dosen": "dcb7791f-0346-4901-8edc-

014a6986ab7f",

 "id_status_aktif": "1",

 "jenis_kelamin": "L",

 "nama_agama": "Islam",

 "nama_dosen": "PENGKI IRAWAN",

 "nama_status_aktif": "Aktif",

 "nidn": "0016118601",

 "nip": "198611162015041001",

 "tanggal_lahir": "16-11-1986"

 },

 {

 "id_agama": 1,

...

Fig. 7. Data Response with GraphQL

E. Query Response Times Measurement Results

Table III and Figure 8 present the results of measuring
query response times in several times of testing the number of
requests from 100, 200, to 1000 requests. The test results show
that the response time using GraphQL is still less fast than
using only REST at the end-point. This is because the use of
GraphQL requires a process of adjusting the data to the
desired one. When viewed from the response data obtained, of
course GraphQL is superior because it fits the needs. In the
1000 request experiment there were anomalies that could be
caused by unstable client computer conditions and this
required special testing on different devices.

TABLE III. GRAPHQL RESPONSE TIME COMPARISON

Request Number Without GraphQL(ms) With GraphQL(ms)

100 292 231

200 298 234

300 303 258

400 314 293

500 377 374

600 618 850

700 996 1.575

800 1.298 4.651

900 5.985 11.000

1.000 18.202 11.862

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 11,2023 at 11:38:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. GraphQL Response Time Comparison

F. Query Data Usage Measurement Results

TABLE IV. COMPARISON OF DATA USAGE

Request Number
Without

graphQL(bytes)

With

graphQL(bytes)

100 129.234 129.172

200 129.234 129.172

300 129.234 129.172

400 129.234 129.172

500 129.234 129.172

600 129.234 129.172

700 129.234 129.172

800 129.234 129.172

900 129.234 129.172

1.000 129.234 129.172

While in Table IV and Figure 9 GraphQL is superior

because the data is not sent all, but in accordance with the
query request from the client.

Fig. 9. Comparison of Data Usage

G. Query CPU Usage Measurement Results

TABLE V. CPU USAGE COMPARISON

Request

Number

Without

graphQL(seconds)

With

graphQL(seconds)

100 26 40

200 25 42

300 61 46

400 20 27

500 22 29

600 33 32

700 20 22

800 30 21

900 38 24

1.000 25 23

Fig. 10. CPU Usage Comparison

The last experiment is CPU usage, from several

experiments in Table V and Figure 1o it can be seen that the

use of GraphQL is still not stable. Several times the number

of different requests presents different data, this needs to be

studied more deeply about the factors that influence it. As

from the influence of the internet and unstable networking.

V. CONSCLUSION

Based on the experimental results in research on the

performance of using GraphQL on Neo Feeder services, it

can be concluded that in terms of data usage, it is certain that

GraphQL usage is superior and the data sent will be in

accordance with the wishes of the user. In contrast, the

response time and CPU Usage for GraphQL usage is still bad.

This can be caused by several factors, including trials carried

out directly through the internet network, the use of computer

hardware must have adequate specifications.

To measure the performance of GraphQL, it is necessary

to conduct more in-depth research and other scenarios that

involve many end-points, so that in the future the advantages

of using GraphQL in addition to Data Usage can be

ascertained.

REFERENCES

[1] E. Widarti et al., “INTEGRASI SISTEM INFORMASI

AKADEMIK TERPADU (SIAKAT) DENGAN FEEDER
PDDIKTI,” vol. 2, no. 3, 2018.

[2] S. Widodo, H. Brawijaya, S. Samudi, and E. Retnoningsih,

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 11,2023 at 11:38:13 UTC from IEEE Xplore. Restrictions apply.

“Integrasi Data Akademik Dengan Aplikasi Feeder PDDIKTI
Berbasis Web service,” Bina Insa. ICT J., vol. 5, no. 2, pp. 153–

162, 2018.

[3] P. L. L. Belluano, “Pengembangan Single Page Application Pada
Sistem Informasi Akademik,” Ilk. J. Ilm., vol. 10, no. 1, pp. 38–

43, 2018.

[4] V. H. Pranatawijaya, “Implementasi Pencatatan Aktivitas
Mahasiswa Menggunakan Web Service Pada Feeder Pddikti

Dengan Metode Extreme Programming,” J. Teknol. Inf. J.

Keilmuan dan Apl. Bid. Tek. Inform., vol. 14, no. 2, pp. 179–188,
2020, doi: 10.47111/jti.v14i2.1188.

[5] K. I. E. Putra, “GrapgQL vs REST API: Apa bedanya?,” 2019.

[Online]. Available: https://www.dicoding.com/blog/graphql-api-
vs-rest-api-apa-bedanya/. [Accessed: 25-Jul-2022].

[6] G. Brito and M. T. Valente, “REST vs GraphQL: A controlled

experiment,” Proc. - IEEE 17th Int. Conf. Softw. Archit. ICSA
2020, no. Dcc, pp. 81–91, 2020, doi:

10.1109/ICSA47634.2020.00016.

[7] G. Brito, T. Mombach, and M. T. Valente, “Migrating to

GraphQL: A Practical Assessment,” SANER 2019 - Proc. 2019

IEEE 26th Int. Conf. Softw. Anal. Evol. Reengineering, pp. 140–

150, 2019, doi: 10.1109/SANER.2019.8667986.
[8] J. G. Ogboada, V. I. E. Anireh, and D. Matthias, “A Model for

Optimizing the Runtime of GraphQL Queries,” vol. 9, no. 3, pp.

11–39, 2021.
[9] D. A. Hartina, A. Lawi, B. Leonard, and E. Panggabean,

“Performance Analysis of GraphQL and RESTful in SIM LP2M
of the Hasanuddin University,” 2018 2nd East Indones. Conf.

Comput. Inf. Technol., pp. 237–240, 2018.

[10] A. Lawi, B. L. E. Panggabean, and T. Yoshida, “Evaluating
graphql and rest api services performance in a massive and

intensive accessible information system,” Computers, vol. 10, no.

11, 2021, doi: 10.3390/computers10110138.
[11] S. K. Mukhiya, F. Rabbiab, V. K. I. Punax, A. Rutle, and Y. Lamo,

“A graphql approach to healthcare information exchange with hl7

fhir,” Procedia Comput. Sci., vol. 160, pp. 338–345, 2019, doi:

10.1016/j.procs.2019.11.082.

[12] R. Gunawan, A. Rahmatulloh, and I. Darmawan, “Performance

evaluation of query response time in the document stored nosql
database,” in 2019 16th International Conference on Quality in

Research, QIR 2019 - International Symposium on Electrical and

Computer Engineering, 2019, doi: 10.1109/QIR.2019.8898035.
[13] J. Sayago Heredia, E. Flores-García, and A. R. Solano,

“Comparative Analysis Between Standards Oriented to Web

Services: SOAP, REST and GRAPHQL,” Commun. Comput. Inf.
Sci., vol. 1193 CCIS, pp. 286–300, 2020, doi: 10.1007/978-3-030-

42517-3_22.

[14] M. Diego Casagranda França and E. Da Silva, “Performance
Evaluation of REST and GraphQL APIs Searching Nested

Objects,” pp. 237–244, 2020, doi: 10.14210/cotb.v11n1.p237-244.

[15] E. Lee, K. Kwon, and J. Yun, “Performance Measurement of
GraphQL API in Home ESS Data Server,” Int. Conf. ICT

Converg., vol. 2020-October, pp. 1929–1931, 2020, doi:

10.1109/ICTC49870.2020.9289569.

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 11,2023 at 11:38:13 UTC from IEEE Xplore. Restrictions apply.

