
2021 International Conference Advancement in Data
Science, E-learning and Information Systems (ICADEIS) 978-1-6654-3709-7

978-1-6654-3709-7/21/$31.00 ©2021 IEEE

Microservices-based IoT Monitoring Application
with a Domain-driven Design Approach

Alam Rahmatulloh
Department of Informatics

Siliwangi University
Tasikmalaya, Indonesia

alam@unsil.ac.id

Dewi Wulan Sari
Department of Informatics

Siliwangi University
Tasikmalaya, Indonesia
dewiws27@gmail.com

 Irfan Darmawan

Department of Information System
Telkom University

Bandung, Indonesia
irfandarmawan@telkomuniversity.ac.id

 Rahmi Nur Shofa
Department of Informatics

Siliwangi University
Tasikmalaya, Indonesia
rahmi.shofa@unsil.ac.id

Abstract—The growth in the use of the Internet of Things
(IoT) is increasingly massive. Along with the continuous
development of the IoT platform, there are obstacles in the
number of nodes that continue to increase. In addition, there are
growing issues of availability, scalability, and functionality of
applications that will lead to dead code. Microservices
architectural pattern emerges as an alternative. However, the
service decomposition process and data management on services
in microservice applications require special attention. Based on
the issues described above, in this study, the microservices
architecture paradigm with a domain-driven design (DDD)
approach is applied to develop an IoT Monitoring application
that can handle various IoT projects on one platform. The
results show that a definition of a service is designed to be more
accurate. The application of the DDD concept in breaking down
application services helps in mapping each domain. Therefore,
it can produce adaptive software products and generate easy-to-
maintain code. The microservice architecture with a REST API-
based approach applied to the IoT monitoring application has
worked well, tested at the unit testing, integration, and
performance stages. Based on performance testing results, the
number of nodes (with three sensors per node) that can access
simultaneously reaches 75 nodes. The total sensors in one node
can have up to 10 sensors per node with a response time of less
than 100ms. System development can be done without
overhauling the entire system and does not interfere with the
performance of other services.

Keywords—Domain-Driven Design, Internet of Things,
Microservices, Monitoring

I. INTRODUCTION
Currently, the growth in the use of the Internet of Things

(IoT) is increasingly massive. During the COVID-19
pandemic, there were more connections to IoT devices than
non-IoT devices. According to current estimates, there will
be 30.9 billion interconnected IoT devices by 2025 [1]. The
development of hardware and information technology has
accelerated the deployment of billions of interconnected,
intelligent, and adaptive devices in the critical infrastructure
of various fields [2]. The IoT has proven its potential to
transform society and has attracted the attention of both
academia and industry.

The characteristic of IoT service is real-time data change.
However, research [3] creates gaps or technical challenges

such as heterogeneity of devices, networks, and operating
systems, interoperability between applications and services,
scalability, and continuous integration.
Furthermore, along with the continuous development of the
IoT platform, there are obstacles in the number of nodes that
continue to increase. Moreover, an increasing number of
application functional and availability issues lead to dead
code as application code grows more extensive and more
complex, resulting in applications that are difficult to
maintain properly. [4]–[6]. As a result, a method to improve
system performance is required to overcome this issue.

The solution proposed in this study is to deal with
performance requirements and system availability in IoT
device monitoring applications. Microservices architectural
pattern emerges as an alternative for the evolution of
monolithic IoT monitoring apps. Microservices consist of
small parts that handle specific activities and communicate
through a light mechanism [7]. However, the service
decomposition process and data management on services in
microservice applications require special attention. An
approach that can facilitate the definition of services to be
more accurate is Domain-Driven Design (DDD) [8]. In
previous research, no one has applied the DDD approach to
IoT monitoring applications case study. The strategic part of
DDD integrates the activities of software development teams
with the business's goals. It aids in determining what to
concentrate on by identifying one core domain.

The majority of pre-existing IoT platforms are designed
for specific and limited uses. In contrast to previous studies
[9]–[12], a platform for monitoring multi-project IoT devices
will be developed in this study. The platform is capable of
handling multiple IoT device monitoring projects in one
platform. The IoT platform in this study can visualize sensor
data in real-time and analyze data for a certain period.
Moreover, the platform provides an open API to achieve
integration of more applications quickly. The platform is
expected to support interoperability and have a better
capacity that can accommodate heterogeneous IoT devices.

II. RELATED WORK
Several previous studies that have tried to implement the

microservices architecture on the IoT platform include

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

A
dv

an
ce

m
en

t i
n

D
at

a
Sc

ie
nc

e,
 E

-le
ar

ni
ng

 a
nd

 In
fo

rm
at

io
n

Sy
st

em
s (

IC
A

D
EI

S)
 |

97
8-

1-
66

54
-3

70
9-

7/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

A
D

EI
S5

25
21

.2
02

1.
97

01
96

6

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 10,2022 at 12:49:58 UTC from IEEE Xplore. Restrictions apply.

research [9], which has developed a parking system by
breaking the system into several small services by applying
the API gateway pattern with a database per service. This
research has carried out system testing using the black-box
method and performance testing on parking machines.
However, the performance testing of several requests
simultaneously on the system server has not been carried out.
In addition, there was no comprehensive explanation of the
decomposition service technique in this study. Research [10]
developed an IoT platform using a microservices architecture
approach and serverless computing. The use of microservice
architecture can improve the scalability and reusability of the
IoT platform. However, in this study, the IoT monitoring
platform was only focused on the agricultural sector. Finally,
research [13] builds an IoT platform by applying
microservice architecture and Object-Oriented Analysis and
Design (OOAD) to service solutions. The test results show
that eight of the nine tested endpoints were completed with a
success rate of 100%, while one endpoint was completed with
a success rate of less than 50%.

Although there are no definite rules regarding service
solutions in the design of a system, data management in
services requires special attention because it can be one of the
challenges and become an obstacle to the system in the future
[6]. Therefore, the design stage in applying microservice
architecture in IoT monitoring applications needs to be done
carefully. In contrast to the previous research mentioned, the
focus of this research will be on implementing a
microservices architecture with an API Gateway database per
service pattern using a lumen micro-framework with the
implementation of a Domain-Driven Design (DDD)
approach to service solutions at the system design stage. An
analysis of the effect is carried out—implementation of
microservice architecture along with DDD. The DDD
approach is to design applications divided into different
contexts according to the domain expert's view. Systems with
microservices architectures that do not apply the concept of
DDD will be more challenging to determine how the system
should be broken down and challenging to define how small
the service should be [14].

III. METHODOLOGY
The research stages consisted of five main stages:

problem identification, data collection with literature studies
and interviews, implementation stage by implementing agile
software development methodologies, evaluation, and
concluding as shown in Figure 1. In addition, to quickly adapt
to changing needs, there are five stages: requirements
analysis, design, system implementation (coding), testing,
and deployment.

A. Identification of Problems
Along with the continuous development of the Internet of

Things platform [15]–[18], there are obstacles in the number
of nodes that continue to increase. Therefore, a way is needed
to improve system performance to overcome this. In addition,
more availability, system scalability, and functional
application problems lead to dead code when the application
code gets more extensive and more complex, causing
applications that cannot be adequately maintained. In
addition, the process of solving services and managing data

requires special attention because it can become one of the
challenges and become an obstacle to the system in the future.

Fig. 1 Methodology

B. Data Collection
The data collection stage was carried out by conducting a

literature study and interview methods. In the literature study
stage, reference studies are carried out from books, national
and international journals between 2016 and 2021, and
documents related to research. We select 44 primary studies
from 135 potentially relevant papers. In addition, interviews
were also conducted with domain experts at the research
location, namely Synapsis.id, a startup engaged in the
Internet of Things, intended to get an accurate picture of
research problems and the system to be built. We conducted
at least three in-depth interviews with software professionals
at Synapsis.id.

C. Implementation
The implementation phase in this research uses an agile

software development methodology. According to research
[19], an agile methodology is fast in adapting to changing
needs. The Agile method is most suitable for tight deadlines
and small budgets.

IV. RESULT AND ANALYSIS
A. Analysis of Requirements
 There are business process identification, functional and
non-functional analysis, and domain analysis during the
requirements analysis phase.
1. Business Process Identification

The business process or flow in the IoT monitoring
application that will be built starts with the user registering.
Next, the user creates a project, groups it into groups, and
registers devices and sensor types. After that, the user can
start sending and retrieving sensor data from the IoT
platform. Finally, monitoring incoming sensor data is
possible.

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 10,2022 at 12:49:58 UTC from IEEE Xplore. Restrictions apply.

2. Functional Analysis
The primary functional analysis in the to-be-built IoT

monitoring application is a system capable of performing user
management, IoT project management, group management,
management of IoT devices and their sensors, capable of
receiving data from sensors and processing sensor data, also
able to display sensor data in the form of visualizations.
Graphically or in tabular form so that end-users can
understand both in real-time and over a specific time based
on the user's preferences. The platform is also providing an
open API for third-party applications to monitor specific IoT
projects.

3. Non-Functional Analysis

Non-functional requirements needed include usability,
the IoT monitoring application has a display that is easy to
understand by users, equipped with easy-to-understand icons,
and alerts or information for users when doing something
such as a question when going to delete data as information.
Status when adding or updating data. In terms of portability,
IoT monitoring applications can be run on devices with a
minimum available RAM of 2GB, installed a web browser
application, available Wifi / LAN network to access the
application server. In terms of reliability, there is user
authentication with passwords and available levels of users
with different functional requirements. There is security in
the database equipped with passwords, and there is
middleware in every microservice application to prevent
unauthorized requests or requests from outside.

4. Domain Analysis

The main thing that must be done in domain-driven
design is defining the domain in the system. Domain refers to
the subject area where the application will be applied. In this
study, the domain in question is the IoT monitoring
application or IoT platform.

B. Design
At this stage, the design stage is carried out by applying a

domain-driven design (DDD) approach [8], [20], in which
there is a context identification process, bounded context
identification, context mapping, and service definition.
However, the interaction between domain experts and
developers is often hampered because of fundamental
differences in communication. For example, domain experts
are generally not familiar with programming concepts like
developers. Therefore, we need a unifying language where
everyone involved can understand the terms or language used
in the system development, known as Ubiquitous Language
in the application of DDD [21].

After the domain-driven design stage has been completed,
the next step is to design the Unified Modeling Language
(UML) [22], including use case, sequence, class, and
deployment diagrams. Use case diagram used to model
systems created with object-based concepts. Sequence
diagrams describe interactions that detail how an operation is
performed. Class diagrams show system classes and their
logical relationships. Deployment diagrams describe the
various processes in the system and how the relationships that
exist in these processes. Next, making microservices
workflow diagrams and designing API specifications to be

used. They are finally designing the interface or system
display.

1. Identify Context

At this stage, similar functions are grouped into the same
context. Furthermore, the domain is broken down into
subdomains which are logically differentiated based on the
model and functional application of the results of the analysis
of similar functional requirements, which is called context.
Based on the results of context identification, the IoT
monitoring application consists of 6 contexts listed in table 1.

TABLE I. CONTEXT IDENTIFICATION OF IOT MONITORING
APPLICATIONS

No Nama Context
1 User
2 Project
3 Group
4 Node
5 Sensor
6 Data

2. Identify Bounded Context

Fig. 2 Identification of the Bounded Context of IoT
Monitoring Applications

Identification of bounded context determines the
boundaries contained in the context [23]–[25]. One bounded
context will be a small service and is the beginning of
microservices formed [26], [27]. Microservices are
derivatives of stateless web services [28], [29]. There are
three bounded contexts identified. First, the bounded context
of the user consists of one context that is the user context. Its
functionality is closely related to user management functions.
Second, the bounded context of node consists of Project,
Group, Node, and Sensor contexts. Its functionality is to
handle master data. Finally, the bounded context retrieves
data consists of context Sensors and Data, which have
functionality directly related to handling incoming data from
the device. The description of the identification of the
bounded context of the IoT monitoring application can be
seen in Figure 2.

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 10,2022 at 12:49:58 UTC from IEEE Xplore. Restrictions apply.

3. Context Mapping

Fig. 3 Context Mapping (Context Mapping) IoT Monitoring
Application

4. Definition of Service

Based on bounded context identification and context
mapping, the IoT monitoring application service solution is
defined into three services: user, node, and data. User-service
consists of a user context in which there are user data
management and authentication functionalities. Node-service
consists of project context, context group, context node, and
context sensor, in which there is a project data management
function, group, nodes (devices), and sensors. Finally, the
data service consists of context sensor data. There is a
function to receive sensor data from the device directly,
process it, and then send data to the client for monitoring and
analysis. The three services identified by the bounded context
are independent and perform their respective functional tasks.

5. Use Case Diagram

Fig. 4 IoT Monitoring Application Use Case Diagram

The use case diagram shown in Figure 4 describes the
interaction between actors, namely admins and guest users,
devices or nodes, or third-party applications with IoT
monitoring applications created.

6. Class Diagram

Fig. 5 Diagram Class Aplikasi Monitoring IoT

7. Sequence Diagram

Fig. 6 Sequence Diagram showing sensor data to the client on
IoT Monitoring Application

8. Deployment Diagram

Fig. 7 IoT Monitoring Application Deployment Diagram

ADMIN

USER

login

logout

update profile

user
management

register

send sensor data

add
user edit

user

delete
user

search
user

show
user

<<extend>>

<<include>>

<<include>>
<<include>>

project
management

add
projectupdate

projectdelete
project

show
project

node
management

add
nodeupdate

node

delete
node

show
node

group
management

add
group update

group

delete
group

show
group

sensor
management

add
sensorupdate

sensor

delete
sensor

show data
sensor

<<include>>

<<include>>

<<include>>

<<include>>

view
information

summary

<<include>>

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 10,2022 at 12:49:58 UTC from IEEE Xplore. Restrictions apply.

9. Microservice Architecture Workflow Diagram
The workflow diagram of the microservice architecture in

the IoT monitoring application can be seen in Figure 8.
Clients and IoT devices do not communicate directly with the
service master on the back-end, but clients and IoT devices
communicate through the service gateway. Client
communication with the service gateway and communication
between services uses a REST API with JavaScript Object
Notation (JSON) format because the code structure of the
JSON format is more concise and easier to understand. At the
service gateway, Lumen Passport is implemented to
authenticate user and node or device logins. The
communication between services requires a secret key whose
configuration is stored in each service master to avoid
requests from outside the service that is not recognized. As a
result, the service master, namely service users, service
nodes, and service data, can be more secure.

Fig. 8 IoT Monitoring Application Microservice Workflow

Diagram

10. API Specification Design
Having an API specification in a team development

environment can speed up the team's integration between
back-end developers and front-end developers. Front-end
developers do not need to wait to complete the back-end
developer's work because the API specification has been
agreed upon. A total of 43 URI or endpoint specifications
were created. The following are some API specifications for
IoT monitoring applications, as shown in Table 2.

TABLE II. API SPECIFICATION DESIGN OF IOT MONITORING
APPLICATION

Information Method URI
Displays a list of all users GET /api/user
Displays a list of all projects GET /api/project
Displays a list of all groups GET /api/group?project_id=

{project_id}
Displays a list of all nodes GET /api/node?group_id={g

roup_id}
Displays a list of all sensors GET /api/sensor?node_id={

node_id}
Receive sensor data from
device

POST /api/data

Retrieve sensor data values GET /api/data/sensor/{id}

C. System Implementation
The system is built using a microservice architecture by

implementing an API-driven communication pattern. Each
service in developing the IoT monitoring application back-
end is built using the Lumen micro-framework v.8.0. with a
minimum development environment specification using PHP
v.7.3. The client or front end is made web-based with the Vue
JS framework. Hardware and Software specifications used in
System Development are listed in table 3.

The services built on the IoT monitoring application
consist of service gateways, service users, service nodes, and
service data. The service gateway acts as a request traffic
gateway to all services. Every request from the client must go
through the service gateway, so the route for all services must
be registered at the service gateway. When there is a request
from the client, the service gateway will validate the request
and then forward the request to the service concerned. In
addition to request validation, the service gateway plays a
role in handling API authentication. The service user is the
service master to handle requests or requests from the service
gateway to manage user data to the database. Data is sent to
the service gateway in a REST API using the HTTP Request
protocol. A service node is a service master whose role is to
handle the project, group, node, and sensor data management.
Finally, service data is a service that functions to manage
sensor data, including receiving sensor data from the device,
processing it, and producing sensor data output in real-time
and timescales. On service users, service nodes, and service
data, a middleware called AuthenticateAccess is
implemented using the key for each service to prevent
unrecognized requests from outside the service gateway.

TABLE III. HARDWARE AND SOFTWARE SPECIFICATIONS USED IN
SYSTEM DEVELOPMENT

Hardware Specifications
Processor Intel Core i3 8th Gen
RAM 12 GB
HDD 500 GB
Software Specifications
Operating System (OS) Windows 10 Home Single

Language 64-bit
Web Browser Google Chrome Version

91.0.4472.77 (Official Build)
(64-bit)

Modeling Figma, Visual Paradigm
Online, Microsoft Visio

Code Editor Visual Studio Code Versi
1.56.2

Version Control System Git
DBMS MySQL Version 5.7.24
Web Server Apache
Universal Development
Environment

Laragon Versi 4.0.12

Testing Tools REST API Apache JMeter, Postman

The results of the IoT monitoring application interface
implementation can be seen in the Figure 9 admin dashboard,
and Figure 10 is a sensor display.

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 10,2022 at 12:49:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 9 Admin Dashboard Page Interface

Fig. 10 Sensor Details Page Interface

D. Testing
1. Unit Test

Unit testing focuses on testing the smallest unit on the
system in the form of features or functions. Tests are carried
out to verify that each unit runs as expected under various
circumstances. Unit testing is carried out using an automatic
test method using a test script by utilizing the PHPUnit library
version 9.5.2, integrated into the Lumen project for each
service. The results of the unit testing of the IoT monitoring
application can be seen in table 4.

TABLE IV. IDENTIFICATION OF IOT MONITORING APPLICATION
CONTEXT

Service
Name

Test
Case

Test
Statement

Execution
Time Memory Status

Service
Gateway

Two
tests

16
assertions 1.9 s 26 MB Passed

Service
User

20
tests

88
assertions 7.3 s 28 MB Passed

Service
Node

48
tests

139
assertions 59.3 s 30 MB Passed

Service
Data

Nine
tests

12
assertions 3.7 s 28 MB Passed

2. Integration Testing

Fig. 11 Endpoint Integration Testing receiving data from

nodes with microservice

Figure 11 is an integration test of 43 endpoints receiving
sensor data from nodes with microservices. The process of
sending data from a node or device using the JSON format.

3. Performance Testing

The test was carried out using Apache Jmeter, which was
carried out three times and limited each run to 1 minute so
that there were consistent parameters to compare. Tests were
carried out using a 64-bit Ubuntu 20.10 LTS Virtual Machine
running on Virtual Box with a basic specification of 2 GB
RAM as a server.

Table 5 shows the average response time, latency, and
throughput of the system in receiving sensor data from
several devices or nodes. Testing is done with each node
having three sensors that access the system simultaneously to
obtain consistent test data. This test is to identify the number
of nodes limits that can be accessed simultaneously.

TABLE V. TEST RESULT OF TOTAL NODES LIMITATIONS ACCESSING THE
SYSTEM CONCURRENTLY

Total
Nodes

Avg.
Response
Time (ms)

Avg.
Latency

(ms)

Avg.
Throughput

(request/minute)

Success
Rate (%)

1 62.3 62.3 954.0 100
2 120.7 120.7 989.7 100
3 217.0 217.0 903.0 100
4 252.7 252.7 950.0 100
5 304.3 304.3 985.0 100

10 787.7 787.7 773.0 100
25 1844.7 1844.7 823.3 100
50 3574.7 3574.3 857.0 100
75 5709.7 5706.7 814.0 99.8

100 13101.7 13097.7 484.7 85.6

TABLE VI. TEST RESULTS LIMITATION OF TOTAL SENSORS IN A
NODE ACCESSING THE SYSTEM SIMULTANEOUSLY

Total
Sensor

Avg. Response
Time (ms)

Avg.
Latency

(ms)

Avg.
Throughput

(request/minute)
1 52.7 52.7 1123.7
2 57.3 57.3 1037.0
3 61.7 61.7 961.3
4 67.0 67.0 888.3
5 73.3 73.3 810.7

10 99.3 98.7 601.3

Details of the average response time, latency, and
throughput of receiving sensor data by the system sent from
several sensors that access the system simultaneously to

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 10,2022 at 12:49:58 UTC from IEEE Xplore. Restrictions apply.

obtain a limit on the number of sensors in a node can be seen
in table 6. as well as representations in figures 12 and 13.

Fig. 12 Graph of response time and latency of the total

sensor test results that access simultaneously

Fig. 13 The throughput graph of the total sensor test results

that access simultaneously

Details of the average response time, latency, and
throughput of accessing sensor data on the system by users
who access simultaneously can be seen in table 7.

TABLE VII. TEST RESULTS OF TOTAL USER LIMITATIONS
ACCESSING THE SYSTEM CONTINUOUSLY

Total
User

Avg. Response
Time (s)

Avg.
Latency (s)

Avg.
Throughput

(request/minute)
1 1.5 1.5 43.0
2 2.2 2.1 59.7
3 2.4 2.4 76.0
4 3.2 3.2 76.0
5 4.1 4.1 74.3

10 8.5 8.4 75.7
25 20.0 19.8 80.7

Based on the results of performance testing, the IoT

monitoring application with a microservice architecture
based on the REST API built can handle the number of nodes
(with three sensors per node) accessing simultaneously at a
time, reaching a limit of 75 nodes. The total sensors in one
node can have up to 10 sensors per node with a response time
of less than 100ms. In testing the user's request to get sensor
data simultaneously, the results show that the response time
of each request is directly proportional to the number of
sensors, so the number of sensors at each node will affect the
throughput or the number of requests handled in one minute.
As for the number of users who access sensor data

simultaneously in the application, there is no definite limit
because the response depends on the amount of data called.

E. Deployment

After the testing phase is over, the system is feasible to be
launched and implemented. However, the software
development cycle will continue. Maintenance, repair, and
updates must be carried out continuously for the survival of
the system.

F. Evaluation

The application of the Domain-Driven Design (DDD)
concept approach positively impacts the resulting design.
DDD is more than what Object-Oriented Analysis and Design
(OOAD) [13] tries to solve. There are Bounded Contexts on
the DDD side, which are delimited the applicability of a
specific model. The software made closely related to the
business domain, rather than being arbitrary decisions made
by the team. Communication with domain experts in the
DDD phase using Ubiquitous Language is beneficial to
describe the system's interactions in terms of the business
problem that is being attempted to solve.

Microservice architecture with a REST API-based
approach or, in other words, an API-driven architecture that
is applied to IoT monitoring applications works well. The
application of microservice architecture in IoT monitoring
applications makes all services built to be more independent
during the development phase. System development can be
carried out without the need to overhaul the entire system. It
will not interfere with the performance of other services, thus
increasing the scalability aspect of the system. In addition, the
development of each service does not depend on the
programming language. At the deployment stage, the service
can be deployed without waiting for the entire service to be
completed, thereby increasing the effectiveness of system
deployment.

V. CONCLUSION
Based on the research results, applying the concept of

domain-driven design (DDD) makes the definition of
boundaries or scope of services more precise and more
accurate than OOAD because the decomposed services are
organized based on business or domain concepts. So that it
can produce adaptive software to changes during the
development phase. In addition, it produces effective code
with object-oriented techniques, resulting in easier to
maintain code and avoiding dead code. That has been tested
at the unit testing, integration, and performance stages.
Furthermore, the implementation of DDD overcomes the
difficulty of defining how small the size of the service is to
be split on a microservice architecture if without DDD. Based
on the performance testing results, the system can handle the
number of nodes (with three sensors per node) that access
simultaneously at one time, reaching 75 nodes. The total
sensors in one node can have up to 10 sensors per node with
a response time of less than 100ms.

The aspects that need to be improved include the
dependence of service data on service nodes. For future
research, we can try to minimize the dependencies between
services and achieve greater scalability by developing event-
based microservice architectures using message broker
technology and the MQTT protocol. In addition, the

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 10,2022 at 12:49:58 UTC from IEEE Xplore. Restrictions apply.

implementation of domain-driven design is not only applied
during the design phase, but the domain-driven design layer
can also be implemented in code in every service in the
development phase.

REFERENCES
[1] K. L. Lueth, “State of the IoT 2020: 12 billion IoT

connections,” 2020. [Online]. Available: https://iot-
analytics.com/state-of-the-iot-2020-12-billion-iot-
connections-surpassing-non-iot-for-the-first-time/.
[Accessed: 24-Feb-2021].

[2] A. A. Karia, L. V. Budhwani, and V. S. Badgujar, “IoT-
Key Towards Automation,” 2018 Int. Conf. Smart City
Emerg. Technol. ICSCET 2018, pp. 1–5, 2018.

[3] L. Sun, Y. Li, and R. A. Memon, “An open IoT framework
based on microservices architecture,” China Commun., vol.
14, no. 2, pp. 154–162, 2017.

[4] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting
with microservices: A systematic mapping study,” J. Syst.
Softw., vol. 150, pp. 77–97, 2019.

[5] C. Setya Budi and A. M. Bachtiar, “Implementasi
Arsitektur Microservices pada Backend Comrades,” Progr.
Stud. Tek. Inform. Univ. Komput. Indones., pp. 1–6, 2018.

[6] A. Messina, R. Rizzo, P. Storniolo, and A. Urso, “A
Simplified Database Pattern for the Microservice
Architecture,” Eighth Int. Conf. Adv. Databases,
Knowledge, Data Appl., no. June, pp. 35–40, 2016.

[7] A. Hermawan, “Peningkatan Ketersediaan Aplikasi Web
Menggunakan Arsitektur Layanan Mikro Berdasarkan
Identifikasi Log Akses,” 2017.

[8] E. Evans, Domain-Driven Design: Tackling Complexity in
the Heart of Software. Addison-Wesley Professional, 2003.

[9] S. Dharma Handayani and U. Uminingsih,
“Pengorganisasian Kerja Sistem Parkir Menggunakan
Arsitektur Microservice,” J. Teknol., vol. 13, no. 1, pp. 27–
35, 2020.

[10] S. Trilles, A. González-Pérez, and J. Huerta, “An IoT
platform based on microservices and serverless paradigms
for smart farming purposes,” Sensors (Switzerland), vol.
20, no. 8, 2020.

[11] N. Nikolakis et al., “A microservice architecture for
predictive analytics in manufacturing,” Procedia Manuf.,
vol. 51, no. 2019, pp. 1091–1097, 2020.

[12] A. Macías, E. Navarro, and P. González, “A Microservice-
Based Framework for Developing Internet of Things and
People Applications,” Proceedings, vol. 31, no. 1, p. 85,
2019.

[13] F. Zaki and S. Adhy, “PENGEMBANGAN INTERNET
OF THINGS PLATFORM BERBASIS WEB
MENGGUNAKAN METODE OBJECT-ORIENTED
ANALYSIS AND DESIGN (OOAD),” 2018.

[14] M. Kalske, N. Makitalo, and T. Mikkonen, “Challenges
When Moving from Monolith to Microservice
Architecture,” Int. Conf. Web Eng., no. February, pp. 32–
47, 2018.

[15] V. Sharma and R. Tiwari, "A review paper on 'IOT' &
It "s Smart Applications," Int. J. Sci. Eng. Technol. Res.,
vol. 5, no. 2, pp. 472–476, 2016.

[16] B. Artono and R. G. Putra, “Penerapan Internet Of Things
(IoT) Untuk Kontrol Lampu Menggunakan Arduino
Berbasis Web,” J. Teknol. Inf. dan Terap., vol. 5, no. 1, pp.
9–16, 2019.

[17] F. M. S. Nursuwars and A. Rahmatulloh, “RFID for nurse
activity monitoring in the hospital’s nurse call system with
Internet of Thing (IoT) concept,” IOP Conf. Ser. Mater.
Sci. Eng., vol. 550, no. 1, 2019.

[18] A. Rahmatulloh, F. M. S. Nursuwars, I. Darmawan, and G.
Febrizki, “Applied Internet of Things (IoT): The Prototype

Bus Passenger Monitoring System Using PIR Sensor,”
2020 8th Int. Conf. Inf. Commun. Technol. ICoICT 2020,
2020.

[19] D. Pal, “Review on Impact of Agile Technologies in
Software Development,” SSRN Electron. J., 2021.

[20] D. Kurniawan, R. Fadli Isnanto, Syamsuryadi, and Fathoni,
“Implementasi Arsitektur Microservice: Studi Kasus Pada
Pengembangan Surat Keterangan Pendamping Ijazah di
Lingkungan Fakultas Unsri,” Pros. Annu. Res. Semin. 2019
Comput. Sci. ICT, vol. 5, no. 1, pp. 978–979, 2019.

[21] V. Vernon, Implementing Domain-Driven Design. 2013.
[22] D. S. Purnia, A. Rifai, and S. Rahmatullah, “Penerapan

Metode Waterfall dalam Perancangan Sistem Informasi
Aplikasi Bantuan Sosial Berbasis Android,” Semin. Nas.
Sains dan Teknol. 2019, pp. 1–7, 2019.

[23] F. Rademacher, J. Sorgalla, and S. Sachweh, “Challenges
of domain-driven microservice design: A model-driven
perspective,” IEEE Softw., vol. 35, no. 3, pp. 36–43, 2018.

[24] B. Hippchen, M. Schneider, P. Giessler, and S. Abeck,
“Systematic Application of Domain-Driven Design for a
Business-Driven Microservice Architecture,” vol. 12, no.
3, pp. 343–355, 2019.

[25] A. Diepenbrock, F. Rademacher, and S. Sachweh, “An
Ontology-based Approach for Domain-driven Design of
Microservice Architectures,” Lect. Notes Informatics
(LNI), Proc. - Ser. Gesellschaft fur Inform., vol. 275, pp.
1777–1791, 2017.

[26] K. Katuwal, “Microservices : A Flexible Architecture for
the Digital Age Version 1 . 1,” Am. J. Comput. Sci. Eng.,
vol. 3, no. 4, pp. 23–28, 2016.

[27] N. Dragoni et al., “Microservices : Yesterday , Today , and
Tomorrow,” Present Ulterior Softw. Eng. Springer, Berlin,
Ger. 2017, pp. 195–216, 2017.

[28] R. Rizal and A. Rahmatulloh, “RESTful Web Service
untuk Integrasi Sistem Akademik dan Perpustakaan
Universitas Perjuangan,” J. Ilm. Inform., vol. 7 No 1, 2019.

[29] A. Pamuji, “Rancang Bangun Web Service Menggunakan
Representational State Transfer Untuk Pengolahan Data
Barang - UTY Open Access,” 2020.

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 10,2022 at 12:49:58 UTC from IEEE Xplore. Restrictions apply.

