08_Comparison_of_JSON_and_X
ML_Data_Formats.pdf

Submission date: 26-May-2023 04:42PM (UTC+0700)

Submission ID: 2102348945

File name: 08_Comparison_of JSON_and_XML_Data_Formats.pdf (2.26M)
Word count: 4117

Character count: 21586

0]
Vol.11(2021) No. 3
ISSN: 2088-5334

International Journal on
Advanced Science
Engineering
Information Technology

Comparison of JSON and XML Data Formats in Document Stored
NoSql Database Replication Processes
Rianto*, Muhamad A@’ad Rifansyah®, Rohmat Gunawan®, Irfan Darmawan®, Alam Rahmatulloh®"

Bepartmmi(yfhlnﬂ}rmtic.\‘, Siliwangi University, Tasikmalaya, Indonesia
! Department of Information System, Telkom University, Bandung, Indonesia

Corresponding author: alam@unsil acid

1

Abstract— The current trend of sgilfions in storing large amounts of data is using the NoSQL Database. !document stored is one type
of NoSQL database that uses the JavaScript Object Notation (JSON) and eXtensible Markup Language (XML) data formats in data
storage. ml Availability database is significant to support cloud-based applications and service: plication is one solution to
maintain the consistency of source data and target data. This sm aims to determine the performance of JSON and XML data formats
in the document stored NoSQL Database replication process. In this study, ArangoDB, RethinkDB, and MongoDB were chosen for use
in the trial process of replication from master-server to slave-server with two different data formats, JSON and XML. Data transfer,
CPU usage, memory usage, and execution time are measured in each trial. Based on research and experiments that have been carried
out, the JSON data format consumes bandwidth with an average value smaller than the XML data format; this occurs in MongoDB,
CouchDB, and RethinkDB. In CPU usage, JSON data format, on average, consumes less CPU compared to the XML data format. This
is the case with MongoDB. While on CouchDB and RethinkDB, the average CPU usage for XML and JSON data formats does not show
a significant difference. The average memory usage for the JSON data format is smaller than the XML data format. The average
execution time of the XML data format a little faster than the JSON data format.

Keywords—Data; JSON; NoSQL; replication; XML.

Manuscript received 4 Apr. 2020; revised 22 Aug. 2020; accepted 29 Nov. 2020. Date of publication 30 Jun. 2021.
IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 Interational License.

Replication is a process of storing data at m@&Jthan one site or
node. Replication can be used to maintain the consistency of
source data and target data [20]. Replication must conf§elr

I. INTRODUCTION

The traditional relational database management system is
continuously being replaced by NoSQL data storage due to
the increasing demand for big data applications [1]-[4].
NoSQL databases have become an increasingly popular
solution for handling unstructuffd data[5], provide high
performance and scalability [6], can be used to store large
amounts of na, and work faster than a relational database
[7]. [8]. The document stored is one type of NoSQL database
(Bt is available at this time [9]-[12]. The increasing use of
Web 2.0 applications has driven growth in volume, speed, and
variations in data sources beyond the limits of relational
database capabilities [13]. The cloud serves NoSQL data
storage to offfcome this problem and provides a replication
mechanism to ensure fault tolerance, high availability, and
increased scalability [14], [15].

High Availability (HA) database is significant to support
cloud-based applications and services. Replication is one
solution that can be used to solve this problem [16]-[19].

modeling data to achieve optimal performance [14]. Java
Script Object Notation (JSON) and eXtensible Markup
Language (XML) are two types of data forElls commonly
used in NoSQL document stored [10], [21]. The JSON data
format is effective in data size and XML Web Application
Programming Interface (API) response times. Still, for some
applications that require the delivery of multiple
heterogeneous XML formats, it offers better support [22].
Using different data formats can affect application
performance [23].

Several experiments fhted to the comparison of JSON
and XMfJdata formats have been carried out in previous
studies. Research condplted by [22], try to compare the
method of sending dat@Ehing JSON and XML formats. Data
size and response tiffd are the two main parameters measured
in the experiments in this study. The results show that the
JSON data format is more effective in data size and web API
response time than the XML data format. However, for

applications requiring complex heterogencous data structures,
the XML format offers better support.

Research conducted by [23], try to compare code, data
models, accessing and extracting in JSON and EML data
formats. The results of his study revealed that to transfer
documents with many different types and data elements,
XML is an ideal choice. JSON is more suitable for dynamic
web applications and simple data transmission. JSON
performance speed is higher than XML because of its simple
structure and easy access to data. JSON will not wholly
replace XML in the WEJ area. XML offers more luxurious
features so Bt it has a place in the transfer and validation of
documents. JSON is more suitable for data exchange, whereas
XML is more suitable for data transmission between servers
and web applications, for example, in Ajax calls.

Previous research [24] has compared JSON and XML data
formats in web technology. The criteria measured in the
experiments in the study include a form of exchange, validity,
ease of data process, readability, efficiency, debugging and
troubleshooting, ease of data creation, security. His research
shows that JSON data formats produce higher values on the
criteria: a form of exchange, comfort of data process,
efficiency compared to XML. However, for the requirements:
validity, readability, debugging and troubleshooting, ease of
data creation, XML security is better than JSEEJ. Each
criterion was further expanded to sub-criteria: user CPU
utilization, system CPU utilization, and memory utilization.
The experimental results show that JSON is best in user CPU
utilization than XML, whereas in the CPU utilization system,
XML performance is better than JSON. For memory
utilization, there is no significant difference between JSON
and XML.

Other studies related to NoSQL Database replication have
been conducted in previous studies, including benchmarking
replication in NoSQL datastores [14], asynchronous NoSQL
Database replication performance measurement [25], and
analy@# of replication mechanisms in the NoSQL Database
[26]. The impact of replication on Cassandra and MongoDB
NoSQL Database performance has been explored [14].
Evaluate the effect of replication compared to clusters that are
not replicated to the same size that are hosted in a private
cloud environment. Benchmark experiments are carried out in
the process of reading and writing heavy workloads with
different access distributions and the level of consistency Bzl
can be changed. This study's experimental results indicate that
replication must be considered in empirical studies and
modeling to achieve an accurate evaluation of document-
based NoSQL databases' performance.

Asynchronous replication performance measurements
were performed on a document stored NoSQL databases [25].
The study discusses NoSQL databases with MongoDB,
CouchDB, and CouchBase types. The parameters tested are at
the time of execution of the CRUD operation by calculating
the average v{flie. Experiments in that study showed
CouchDB had a perfect overall performance time on the
insert, update and delete queries, whereas MongoDB read
questions were faster than other NoSQL databases.

The replication mechanism in the MongoDB NoSQL
Database, including Master-Slave and replica sets, has been
analyzed [26]. The writing operation's implementation is run
on Master; Slave is configured so that it can send out

4
synchronous data synchronous commands to the gastt:r to
update the data. The read operation is only implemented on
the Master to provide durable consistency, while the reading
operation implementation onffBlave gives the ultimate
flexibility. A replica collection is a group of servers that run
Mongod and keep copies of the same data with automatic
failover and automatic recf@ery of node members. His
research results show that MongoDB is one of the best
NoSQL databases, document-oriented, schema-free, and
supports complex data structures and can hold large amounts
of data, rich query support, and scalability, and high
performance. 10

Measuring the performance of JSON and XML data
formats {ffla stored database based on the NoSQL replication
process is the main objective of this study. MongoDB,
ArangoDB, and RethinkDB were selected for use in
experiments, which were installed on Master-Server and
Slave-Server. Data entry requests are made from clients
connected to the Master-Server. The configuration is done on
each machine so that the replication process from Master-
Server to Slave-Server occurs. The test scenario that will be
carried out is by inputting data repeatedly. The data entered
by the bears are tested with different amounts of input. These
experiments will then be measured and examined with
parameters test memory usage, data transfer, and CPU usage.
The test data is stored and presented in tables and graphs, used
as material for concluding.

IT. MATERIAL AND METHOD

There are three main stages carried out in this study,
namely: system preparation, implementation, measurement.

A. System Preparation

1) Software Preparation: At this stage, each software
used in the experiment will be prepared, including the
operating system, NoSQL database, afffJtools. The software
specifications used in the experiments in this study are shown
in Table 1.

TABLE L
SOFTWARE SPECIFICATIONS
Item Master- Slave- Server Client
Server
Operating Linux Ubuntu Linux Ubuntu Linux
System 16.04 16.04 Ubuntu
16.04
NoSQL MongoDB MongoDB -
Database 4.0.8 4.0.8
CouchDB CouchDB
230 2.3.0
RethinkDB RethinkDB
236 236
Programming Python 3 Python 3 Python 3
Tools
System Atop 2.2.6 Atop 2.2.6 -
Monitoring Netatop 1.0 Netatop 1.0
Tools

2) Hardware Preparation: At this stage, an identification
of each hardware used in the experiment will be performed.
The equipment used in the research consisted of Master
Server, Slave Server, and Client computers. The hardware

specifications used in the experiments in this study are shown
in Table 2.

TABLE I
HARDWARE SPECIFICATIONS

Item Master-Server Slave- Server Client
CPU AMD E-450 Intel Celeron Intel
(Zacate) 1.65 2.0GHz Celeron
GHz B7714
GHz
Memory DDR3 4 GB DDR2 2 GB DDR3 4 GB

1
3) Test Data: !he data used as an experiment in this
study is of type string. Data entities inputted are smartphone
data with attributes: name, network, display, CPU, memory
card, primary camera, battery, price.

4) System Architecture Preparation: At this stage, the
system architecture is needed to support the experiments that
will be carried out b)ﬂwolving hardware, software, and
network configuration. In general, the system of architecture
built is shown in Figure 1.

yw JPrimary Server

Imput ‘System Monitor Software

E — Replication

NoSQL Chent

Database Sarver

Database Server
(Primary (Secondary

I
@)
[
| User

Fig. 1 NoSQL database document stored replication system architecture

Figure 1 shows the general system architecture needed for
the NoSQL Database replication process to be performed in
an experiment. The NoSQL Client application is installed on
users who are connected to a database server that acts as the
Master-Server. One-way replication is designed to be able to
run from Master-Server to Slave-Server.

B. Implementation

Linux Ubuntu 16.04 is installed on Master-Server, Slave-
Server, and Client. NoSQL Database MongoDB 4.0.8,
CouchDB 2.3.0, and RethinkDB 2.3.6 are installed on Master-
Server and Slave-Server. Atop 2.2.6 and Netatop 1.0 are used
to measure data transfer, CPU usage, Memory usage, and
execution time installed on Master-Server and Slave-Server.
The Python-based NoSQL Client library on the client
computer application is used to be able to process query insert
data from the client to the Master-Server. The replication
process is one-way from Master-Server to Slave-Server.
Network transmission media uses UTP CAT 5 cable. Data
that has been prepared previously, inputted from the client to
the Master-Server. Master-Server and Slaver-Server
configuration are done so that the replication process can run.
Data input is repeated using different amounts: 2.000, 4.000,
6.000, 8.000, 10.000.

C. Measurement

The results of data transfer measurements, CPU usage,
memory usage, and execution time of each trial are recorded
in the table.

. RESULT AND DISCUSSION
A. Replication Configuration
At this stage, a replication configuration for the NoSQL
Database will be used. In this experiment,t the Master-Server
uses the Internet Protocol Address 192.168.1.1/24, while the
Slave-Server uses the Internet Protocol Address

192.168.1.2/24. The replication configuration results in
RethinkDB are shown in Figure 2.

Sharding and replication for fixsmart.smarttable *

@ Applying changes may cause the table to become temporarily unavailable.

‘1 | shards |2_ replicas per shard
m max: 2 ‘
¥ Where's my data golng?
Shard 1
= rpl_1_nzq = Primary replica
e © rplanif it} Secondary repiica

Fig. 2 Configuring replication on RethinkDB

Figure 2 shows the configuration of replication in
RethinkDB, which is done through the administration panel.

1: fhome/farsyad
rs:PRIMARY> rs.conf()
{

"_id" @ “rs",

"version" : 2,

"protecolVersion” : NumberLong(1},

"writeConcernMajorityJournalDefault” : true,

"members” : [

{
"_id" : 8,
"host” : "192.168.1.1:27817",
"arbiterOnly” : false,
"buildIndexes” : true,
I "hidden" : false,

"priority” : 1,
"tags" : {

»
"slaveDelay"
"votes” : 1

: NumberLong(®),

" id" o1,

"host" : "rpl-2:27617",
"arbiterOnly” : false,
"buildIndexes” : true,
"hidden" : false,
"priority” : 1,

"tags" : {

"slaveDelay”
"votes” : 1

: NumberLong(®),

}

"settings” :
"chainingAllowed” : true,
"heartbeatIntervalMillis" : 2600,
"heartbeatTimeoutSecs” : 16,
"electionTimeoutMillis" : 10060,
“catchUpTimeoutMillis” @ -1,
"catchupTakeoverDelayMillis" : 20000,
"getLastErrorModes” : {

Fig. 3 Configuration of replication in MongoDB

Figure 3 shows the replication configuration in MongoDB
that is saved in the rs.conf file. Master-Server is set with _id:
0 and Slave-Server with _id: 1. Port 27017 was chosen for use
in the replication process.

Job Configuration

Source
Typs: Local database -
Hame: fsmart -
Authenticabion: Username and password -

admn

Target

Type: Exstng remole database -

Name; 192,168, 1.2:5884 Musmart

Authenticabion: Username and password -
admn
Options
Repicaion bype: Contnucus. -
Replcation document, B05227c555121033522923040001 07 x

Fig. 4 Configuration of replication in CouchDB

Figure 4 shows the configuration of CouchDB replication
performed on the Master-Server. Slave-Server as a replication
target uses IP Address 192.168.1.2 with port 5984.

B. Query Preparation

Figure 5 is a display of the insert query on MongoDB on
the Master Server with the JSON data format. This stage is
the process of preparation and making sure the queries to be
used are appropriate.

1 [import pymongo

2

3 myclient = pymongo.MongoClient ("

mongodb://f192 .168.1.1:27017/")

4 mydb = myclient["fixsmart"]

5 mycol = mydb["smarttable”]

6 for x in range {(10000):

7 mylist = {"_id" : x, "Smartphone®: [{"Name" :
"Asus ZenFone Live (L2)", "Network™ : "GSM / HSPA
/ LIE™, "Display™ : "IPS LCD capacitive
touchscreen, 16M colors™, "CPU" : "Quad-core 1.4
GHz Cortex-AS53", "MemoryCard®™ : "microSD, up to 1
TB (dedicated slot)", "MainCamera"™ : "8 MP or 13
MP, £/2.0, PDAF", "Battery"” : "Non removable
Li-Ion 3000 mAh battery®, "Price® : 4300000}]}

8 x = mycol.insert_ one (mylist)

Fig. 5 Insert data in MongoDB with the JSON data format

Figure 5 shows the insert process query's source code with

the JSON data format applied to MongoDB.

10.000

repetitions are performed using the for-do source code. In
Figure 5, lines 7 - & show the JSON data format in an array.

T [import. pymongo
2

w

myclient = pymongo.MongoClient ("

mongodb: //192.168.1.1:27017/7)

mydb = myclient["fixsmart"]

mycol = mydb["smarttable"]
EHfor x in range (10000):
mylist = {"_id": x, "xml"™ :
"<Smartphone><Name>Asus ZenFone Live
(L2) </Name><Network>GSM / HSPA /
LTE</Network><Display>IPS LCD capacitive

o

1.4 GHz Cortex-A53</CFU><MemoryCard>microsD,

removable Li-Ion 3000 mAh

-
o - x = mycol.insert_one (mylist)

touchscreen, 16M colors</Display><CPUsQuad-core

1 TB (dedicated slot)</MemoryCard><MainCamera>2 MP
or 13 MP, £/2.0, PDAF</MainCamera><Battery>Non

battery</Battery><Price>4300000</Frice></Smartphone>

up to

Fig. 6 Insert data in MongoDB with XML data format

Figure 6 shows the insert process query's source code with
the XML data format applied to MongoDB. 10.000 repetitions
are performed using the for-do source code. In Figure 6, lines
7 - 8 display the XML data format marked with the opening
tag "< =" and the closing tag "< />" on each data item.

fimport couchdb
user = "admin"
password = "a"
h er = hdb . Server ("

oW A

dbname = "fixsmart"
db = couchserver [dbname]

woeadn o

for i in range(10000):

battery®, "Price” : 4300000}]})

" % (user, password))

10 db [str{i)] = ("Smartphone”: [{"Name" : "Asus
ZenFone Live (L2)", "Network™ : "GSM / HSPA / LIE",
"Display” : "IPS LCD capacitive touchscreen, 16M
colors®™, "CPU" : "Quad-core 1.4 GHz Cortex-AS3",
"MemoryCard” : "microSD, up to 1 TB (dedicated
slot)"™, "MainCamera” : "8 MP or 13 MP, £/2.0, PDAF"
, "Battery" : "Non removable Li-Ion 3000 mAh

Fig. 7 Insert data in CouchDB with the JSON data format

fimport couchdb
user = "admin"
password = "a"
couchserver = couchdb.Server("

B oW N e

dbname = "fixsmartc"”
db = couchserver[dbname]

for i in range(10000):

O Wwm et

-

LTE</Network><Display>IF5 LCD capacitive

removable Li-Ton 3000 mih

hetp://%s:%s8192,168.1,1:5984/™ % {user, password))

db [atr{i)] = ("xml" : "<Smartphone><Name>Asus
ZenFone Live (L2)</Name><Network>GSM / HSPA /

touchscreen, 16M colors</Display><CPUsQuad-core
1.4 GHz Cortex-A53</CPU><MemoryCard>microSD, up to
1 TB (dedicated slot)</MemoryCard><MainCamera>8 MP
or 13 MP, £/2.0, PDAF</MainCamera><Battery>Non

battery</Battery><Price>4300000</Price></Smartphone>

Fig. 8 Insert data in CouchDB with XML data format

Figure 7 shows the insert process query's source code with
the JSON data format applied to CouchDB. 10.000 repetitions

are performed using the for-do source code. In figure 7, line
10 display the JSON data format in an array.

Figure 8 shows the syntax of the insert process query with
the XML data format applied to CouchDB. 10.000 repetitions
are performed using the for-do syntax. In figure 8, line 10
display the XML data format marked with the opening tag
"< >"and the closing tag "< /=" on each data item.

hmrt rethinkdb as rdb
r = rdb.RethinkDB ()
r.connect {"192.168.1.1', 28015).repl()

for x in range {(10000):
r.db('fixsmart').table('smarttable').insert{{'id':
x, 'Smartphone': [{'Name®' 'Asus ZenFone Live
(L2) ', 'Network' "GSM / HSPA / LTE', 'Display’
'IP5 LCD capacitive touchscreen, 16M colors', 'CPU'
'Quad core 1.4 GHz Cortex-A53', 'MemoryCard'
*microSD, up to 1 TB (dedicated slot)',
'8 MP or 13 MP, £/2.0, PDAF',
'Non-removable Li-Ion 3000 mAh battery’
4300000 }]}).run()

Mot WA

'MainCamera"
‘Battery'
+ "Price’

Fig. 9 Insert data in Rethink DB with the JSON data format

Figure 9 shows the syntax of the insert process query with
the JSON data format applied to CouchDB. 10.000 repetitions
are performed using the for-do syntax. In figure 9, line 6
display the JSON data format in an array.

fimport rethinkdb as rdb
r = rdb.RethinkDB ()
r.connect("192.168.1.1", 28015).xepl(}

for x in range(10000):
r.db{'fixsmart').table('smarttable').insert ({'id":
x, ‘¥ml' '<Smartphone><Name>Asus ZenFone Live
(L2)</Name><Network>GSM / HSER /[
LTE</Network><Display>IPS LCD capacitive
touchscreen, 16M colors</Display><CPU>{uad-core
1.4 GHz Cortex-AS53</CPU><MemoryCard>micro5SD, up to
1 TB (dedicated slot)</MemoryCard><MainCamera>8 MP
or 13 MP, £/2.0, PDAF</MainCamera><Battery>NHon
removable Li-Ion 3000 mhh
battery</Battery><Price>4300000</Price></Smartphone>|
'}) .zun()

Fig. 10 Insert data in RethinkDB with XML data format

Ao W R

Figure 10 shows the syntax of the insert process query with
the XML data format applied to RethinkDB. Ten thousand
repetitions are performed using the for-do syntax. In figure 10,
line 6 display the XML data format marked with the opening
tag "< >"and the closing tag "< />" on ecach data item.

C. Query Execution

During the measurement process, each application running
has its own process ID so that identification can be made, and
measurements are not interrupted by other applications
running simultaneously on the machine being used.

Units of Kilobits per second (Kbps) are used to measure
data transfer. The data transfer size is obtained based on two
parts, namely the Master-Server Output Bandwidth and the
Slave-Server Input Bandwidth consumed during the NoSQL
database replication process. The data transfer size used when
replicating is shown in Figure 11.

Figure 11 is a display in the process of executing the
request that is displayed in a column named BANDWI and
BWNDWO. BANDWI is the input bandwidth, while
BANDWO is the output bandwidth. The CPU used for each
replication process experiment is measured in per cent (%).

Percentages are obtained based on overall CPU capacity. The
rate of CPU used when replicating is shown in Figure 12.

OS85 root@rpl-1: fhomefarsyad

sys 3.57s dexit 5

I | | #proc 222 | |
PU | sys 11% | user 41% | idle TT% | wait T1% |
pu | sys TS | user 24% | idle 49% | cpuBBl W 18% |
pu | sys 4% | user 16% | idle 28% | cpuBBb® w 52% |
PL | avgl B.96 | avgs 6.44 | csw 71674 | intr 58925 |
EM | tot 31.56 | free 2.86¢ | buff 62.7M | slab 66.3M |
SWP | tot 7.46 | free 7.46 | wvmcom 3.7G | wnlim 9.2G6 |

I | | | 1
ET | transport | tepe 12729 | uwdpi 8 | udpo g |
ET | network | ipo 12885 | ipfrw 8 | deliv 12894 |
ET | enol 2% | peki 12691 | pcke 12686 | so 1386 Kbps |
ET | lo cess | peki 203 | pcke 203 | so 6 Kbps |

[
mongod
beam.smp
systemd- timesy
sshd
jbd2/sdas-8
ato|

P
kworker jo:1
kworker /
kworker f1:1H
ksoftirgd/1

22332333330

Fig. 11 Measurement of data transfer using ATOP

dextt

P 5YS #proc

PU sYSs idle T walt T1%

pu sys idle 49% | cpubsl w 18%

pu sys idle 28% cpuBBE W 52%

PL avgl 0. Csw 71674 intr 50925

EM tot 3. buff 62.7M slab 66.3M
walim 9.26

| |
| |
| [
| |
| |
| |
EWP | tot 7. | wmcom 3.7G
| |
| |
| [
| 1
| [

ET transport udpi] udpo 0
ET network ipfrw -] deliv 12894
ET enol pcko 12686 50 1386 Kbps
ET 1o pcko 263 | so 6 Kbps

Fig. 12 Measurement of CPL usage using ATOP

In Figure 12, CPUs used are displayed in the CPU column
in units of%. Simultaneously, the Memory used during the
replication process is measured in Megabytes (MB). Memory
measurements are obtained based on the Memory used by the
NoSQL database application during the replication process,
as shown in Figure 13.

!EK‘.

] I | #proc | 5|
CPU | sys] | idle T | wait 7% |
cpu | sys I | idle 49% | cpubel w 18% |
cpu | sys I | idie 28% | cpubed w 52% |
CPL | avgl I | csw 71674 | intr 50925 |
MEM | tot 3.56 | free 2.86 | buff 62.7M | slab 66.3M |
SHP | tot 7.4G6 | free T.4G | wvmcom 3.7G | wvmlim 9.26 |

] I | 1 I
NET | transport | tcpe 12729 | udpi 8 | udpo B |
NET | network | tipo 12889 | ipfrw 8 | deliv 12894 |
NET | enol 2% | pcki 12691 | pcko 12686 | so 1386 Kbps |
NET | 1lo - | pcki 283 | pcko 283 | so 6 Kbps |

mongod

2784 1.2G oK 24K oK oK 3% compiz

2963 1.4G oK BK oK BK 2% gnome-software
3052 B45.8M BE oK oK BK 2% evolution-cale
2489 2.6G BK. 8K oK BK 2% bean.snp

2781 657.2M B 8K Bk BK 1% unity-panel-se
2759 939.6M BK 13 oK BK 1% unity-settings
3679 802.1M oK oK oK oK 1% evolution-cale
3897 1.2G BE eK oK Bk 1% evolution-cale
2728 572.8M BK 8K oK BK 1% ibus-ul-gtk3

Fig. 13 Measurement of memory usage using ATOP

Figure 13 shows the size of memory usage when the
replication process is displayed in the RSIZE column. Each
running application has a unique process ID (PID), so it can
be identified. Execution time is done by measuring the time

used in the replication process of a document-based NoSQL
database server application stored in second (s) units.
Execution time is obtained based on the length of time the
CPU is used in two parts, namely the CPU System and the
User CPU, as shown in Figure 14.

© 80 root@rpl-1: fhome/arsyad
rol1

s § wexi

PRC | 3.57s | wuser 11.63s | #proc 222 | 5 |
cPU | sys 11% | user 41% | idle 77% | wait 71% |
epu | sys 7% | user 24% | idle 49% | cpubBl w 18% |
cpu | sys 4% | user 16% | idle 28% | cpuees w 52% |
CPL | avgl B.96 | avgs B.44 | csw 71674 | intr 58925 |
MEM | tot 3.56 | free 2.86 | buff 62.7M | slab 66.3M |
WP | tot 7.4G | free 7.4G | wmcom 3.7G | wmlim 9.2G |

| I 1 [[
NET | transport | tcpo 12729 | udpi 8 | udpo 80 |
NET | network | ipe 12889 | ipfrw B | deliv 12894 |
NET | enol 2% | pekl 12691 | peke 12686 | so 1386 Kbps |
NET | 1o | peki 203 | pcke 203 | so 6 Kbps |

o. mongod
8d4s B, oK BK 12K 2% beam.smp
245 B. 3 BK 68K 1% jbd2/sda6-8
o8s B, oK oK oK 8% atop
422 11s B, BK BK 6K 0% kworker/e:1
3964 89s 8. ;4 BK ok 0% kworkerf1:1
T2 o6s B, oK oK oKk 8% kworker/1:1H
1 84s D, BK BK 8K 0% ksoftirqd/1
83s b. BE BK 8K 8% rcu_sched
2784\8.015 0. oK oK oK 8% conpiz

Fig. 14 Measurement of exclusion time using ATOP

Execution time at the replication process in Figure 14 is
displayed in the SYSCPU column for System CPU and
USRCPU for User CPU.

D. Measurement Results

Experimental data that has been stored in a table is then
displayed in graphical form. Data presentation is focused on
comparing the use of JSON and XML data formats in the one-
way replication process from Master-Server to Slave-server.
Measurement of data transfer is divided into two parts,
namely the nput bandwidth and output bandwidth, shown in
Figure 15.

Bandwidth Average (Kbps)
2000 1828,4
1800 1738,8
1600
1400
1200
1000
800
600 493 505,2
XN
40 % 2266 255
- Nl B 1
0
XML JSON XML JSON XML
MaongoDB CouchDB RethinkDB

Fig. 15 Average data transfer

Figure 15 shows that the bandwidth consumed for the
JSON data format on MongoDB, CouchDB, and RethinkDB
with an average of 1.738,8 Kbps, 493 Kbps, and 226,6 Kbps
is smaller than the XML data format with an average of
1.828.4 Kbps, 505,2 Kbps and 255 Kbps.

CPU Average (%)

20 83T
80

70 65
&0

50
40
0 238 236
20

-o 1l
o

150N XML 150N XML 150N XML
MongoDB CouchDB RethinkDB

Fig. 16 Average CPU usage

Figure 16 shows that the CPU used for the JSON data
format on MongoDB with an average of 63.8% smaller than
the JSON data format, with an average of 65%. While on
CouchDB and RethinkDB, the average CPU usage for XML
and JSON data formats does not show a significant difference.

Memory Average (MB)

308,24

122,76 127,08 13064 139,1

ISON XML
CouchDB

JSON XML
RethinkDB

MongoDB

Fig. 17 Average memory usage

Figure 17 shows the average JSON data format memory
usage in MongoDB (262,6 MB), CouchDB (122,76 MB) and
RethinkDB (130,64 MB) smaller than the XML data format
with an average MongoDB (308,24MB), CouchDB (127,08
MB) and RethinkDB (139, 1MB).

Figure 18 shows the average execution time of XML data
format in MongoDB (10.19 second), CouchDB (475,006
second) and RethinkDB (59,696 second) slightly faster than
the JSON data format with MongoDB average (10.324
second), CouchDB (476,966 second) and RethinkDB (60,482
second).

Execution Time Average (s)

600

500 476,966 475,066

400

300

200

100 60,482 59,696

o e 20 N
ISON XML | JSON XML | JSON XML
MongoDB CouchDB RethinkDB

Fig. 18 Average execution time

IV. CONCLUSION

This research results that the JSON data format is known
to be able to consume smaller bandwidth when compared to
the XML data format, it occurs in all NoSQL databases that
have been tested, namely MongoDB, CouchDB, and
RethinkDB. For CPU usage, JSON data format, on average,
consumes less CPU compared to the XML data format, this is
the case with MongoDB. While on CouchDB and RethinkDB,
the average CPU usage for XML and JSON data formats does
not show a significant difference. The average memory usage
for the JSON data format is smaller than the XML data format
and for the average execution time of the XML data format a
little faster than the JSON data format. Choosing other
NoSQL database applications and choosing other replication
schemes such as two-way replication are some challenges that
can be tried in subsequent studies.

REFERENCES

[11 A. Corbellini, C. Mateos, A. Zunino, D. Godoy, and S. Schiaf,
“Persisting big-data: The NoSQL landscape,” pp. 1-23, 2016, doi:
10.1016/.i5.2016.07.009.

[2] H.Gujral, A. Sharma, and P. Kaur, “Empidcal Investigation of Trends
in NoSQL-Based Big-Data Solutions in the Last Decade,” 2048 1/th
Int. Conf Contemp. Comput [C3 2018, pp. 1-3, 2018, doi
101 1091C3.201 8 8530582,

[3] A Makris, K. Tserpes, V. Andronikou, and D. Anagnostopoulos, “A
Classification of NoSQL Data Stores Based on Key Design
Characteristics,” Procedia Comput. Sci., vol. 97, pp. 94-103, 2016,
doi: 10.1016/).procs.201 6.08.284.

[4] G.Bathla, R. Rani, and H. Aggarwal, “Comparative study of NoSQL
databases for big data storage,” Int. J. Eng. Technol, vol 7, no. 2, pp.
83-87, 2018, doi: 10.14419/ijet. v7i2.6.10072.

[5] S. Bjeladinovic, “A fresh approach for hybrid SQL/NoSQL database
design based on data structuredness,” Enterp. Inf. Syst, vol. 12, no. 8—
9, pp. 1202-1220, 2018, doi: 10.1080/17517575 2018, 1446102,

[6] C. Gomes, E. Borba, E. Tavares, and M. N. D. O. Junior,
“Performability model for assessing NoSQL DBMS consistency,”
SvsCon 2019 - [3th Annu. IEEE Int. Syst. Conf. Proc., pp. 1-6, 2019,
doi: 10.1109/SY SCON.2019.8836757.

[7] Y. Liand S. Manoharan, “A performance comparison of SQL and
NoSQL databases,” IEEE Pacific RIM Conf. Commun. Compul.
Signal Process. - Proe., no. November, pp. 15-19, 2013, doi:
10.1109/PACRIM.2013.6625441 .

[8] V. Abramova, J. Bernardino, and P. Furtado, “SQL or NoSQL?
Performance and scalability evaluation,” fnt. J. Bus. Process Iniegr.
Manag., wvol. 7, no. 4, pp. 314-321, 2015, doi
10.1504/LIBPIM.2015.073655.

[9] B. Acharya, A. K. Jena, J. M. Chattegee, R. Kumar, and D.-N. Le,
“NoSQL Database Classification,” Int. J. Knowledge-Based Organ.,
vol. 9, no. 1, pp. 50-65, 2018, doi: 10.4018/jjkbo.2019010105.

[10] A. Davoudian, L. Chen, and M. Liu, “A Survey on NoSQL Stores,”
ACM Comput. Swrv., vol. 51, no. 2, pp. 143, 2018, doi
10.1145/3158661.

1156

(1]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Gupta, 8. Tyagi, N. Panwar, 5. Sachdeva, and U. Saxena, “NoSQL
databases: Critical analysis and comparison,” 201 7 Int. Conf. Comput.
Commun. Technol. Smart Nation, IC3TSN 201 7, vol. 2017-Octob, pp.
293-299, 2018, doi: 10.1109/IC3TSN.2017.8284494.

R. Gunawan, A. Rahmatulloh, and I Darmawan, “Performance
Evaluation of Query Response Time in The Document Stored NoSQL
Database,” in 2009 [6th International Conference on Quality in
Research (QIR): International Symposium on Electrical and
Computer Engineering, 2019, Pp- 16, doi:
101 109/QIR2019.889803 5.

M. M. Patil, A. Hanni, C. H. Tejeshwar, and P. Patil, “A qualitative
analysis of the performance of MongoDB vs MySQL database based
on insertion and retrieval operations using a web/android application
to explore load balancing-Sharding in MongoDB and its advaniages,”
FProc. Int. Conf. loT Soc. Mobile, Anal. Clowd, I-SMAC 2017, pp. 325—
330, 2017, doi: 10.1109/1-SMAC.2017.8058 365,

G. Haughian, R. Osman, and W. J. Knottenbelt, “Benchmarking
replication in Cassandra and MongoDB NoSQL datastores,” Lect.
Notes Comput. Sei. (including Subser. Lect. Notes Artife Intell. Lect.
Notes Bivinformatics), vol. 9828 LNCS, no. 3, pp. 152-166, 2016, doi:
10.1007/978-3-319-44406-2_12.

W. Hendricks, “Review of NoSQL Data Stores: Using a reactive three-
tier application for software developers to achieve a high availability
application design architecture,” pp. 71-77, 2019.

R. Shrestha, “High Availability and Performance of Database in the
Cloud - Traditional Master-slave Replication versus Modem Cluster-
based Solutions,” no. Cleser, pp. 413420, 2017, doi:
10.5220/0006294604 130420,

E. Tang and Y. Fan, “Performance comparison between five NoSQL
databases.” Proc. - 2016 7th Int. Conf Cloud Comput. Big Data,
CCBD 2016, pp. 105-109, 2017, doi: 10.1 109/CCBD .2016.030.

K. Tabet, R. Mokadem, and M. R. Laouar, “Towards a new data
replication strategy in MongoDB systems,” ACM far. Conf.
Proceeding Ser., 2018, doi: 10.1145/3213 [87.3287609.

K. Tabet, R. Mokadem, and M. R. Laouar, A data replication strategy
for document-oriented NoSQL systems.” fne. J. Grid Uil Comput.,
vol. 10, no. 1, pp. 53-62, 2019, doi: 10.1504/0GUC.2019.097227.
K. Ma and B. Yang, “Stream-based live data replication approach of
in-memory cache,” Concurr. Comput., vol. 29, no. 11, 2017, doi:
10.1002/cpe4052.

H. Hashem and D. Rane, “Evaluating NoSQL document-oriented data
model.” Proc. - 200 6 4th Ini. Conf. Futur. Infernei Things Cloud Work.
W-FiCloud 2016, pp. 51-56, 2016, doi: 10.1109/W-FiCloud.2016.26.
A.R. Breje. R. Gyorodi, C. Gyorodi. D. Zmaranda. and G. Pecherle,
“Comparative study of data sending methods for XML and JSON
models,” Int J. Adv. Comput. Sci. Appl., vol. 9, no. 12, pp. 198-204,
2018, doi: 10.14569/1JACSA2018.091229.

A. Simec and M. Magli¢i¢, “Comparison of JSON and XML Data
Formats,” Cent. Eur. Conf- Inf Intell. Syst., pp. 272-275,2014.

Z.U. Hag, G. F. Khan, and T. Hussain. “A Comprehensive analysis of
XML and JSON web technologies,” New Dev. Circuits, Syst. Signal
Process. Commun. Comput., pp. 102-109,2014.

C. 0. Truica, F. Radulescu. A. Boicea, and 1. Bucur, “Performance
evaluation for CRUD operations in asynchronously replicated
document-oriented database,” Proc. - 2015 20th Int. Conf. Control
Syst. Comput. Sci. CSCS 2005, pp. 191-196, 2015, doi:
10.1109/CSCS2015.32.

Y. Gu et al., “Analysis of Data Replication Mechanism in NoSQL
Database MongoDB.” pp. 66-67, 2015,

08_Comparison_of_JSON_and_XML_Data_Formats.pdf

ORIGINALITY REPORT

16 7 126 6w

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Rohmat Gunawan, Alam Rahmatulloh, Irfan 20/
Darmawan. "Performance Evaluation of Query ’
Response Time in The Document Stored

NoSQL Database", 2019 16th International

Conference on Quality in Research (QIR):

International Symposium on Electrical and

Computer Engineering, 2019

Publication

1

Irfan Darmawan, Alam Rahmatulloh, Igbal 20/
Muhammad Fajar Nuralam, Rianto, Rohmat ’
Gunawan. "Optimizing Data Storage in
Handling Dynamic Input Fields with JSON
String Compression", 2020 8th International
Conference on Information and
Communication Technology (IColCT), 2020

Publication

Submitted to University of Greenwich 2%

Student Paper

Yunhua Gu, Xing Wang, Shu Shen, Sai Ji, Jin 20
n . . .)0

Wang. "Analysis of data replication

mechanism in NoSQL database MongoDB",

-~

2015 IEEE International Conference on
Consumer Electronics - Taiwan, 2015

Publication

o

link.springer.com

Internet Source

(K

Tlibrary.net

Internet Source

T

=

Irfan Darmawan, Alam Rahmatulloh, Rohmat
Gunawan. "Real-time Screen Sharing Using
Web Socket for Presenting Without Projector”,
2019 7th International Conference on
Information and Communication Technology
(ICoICT), 2019

Publication

T

e-journal.uajy.ac.id

Internet Source

T

www.insightsociety.org

Internet Source

%

RN
o

repository.ubaya.ac.id

Internet Source

%

—
—

www.researchgate.net

Internet Source

T

N
N

ljeecs.iaescore.com

Internet Source

T

—
w

docs.aws.amazon.com

Internet Source

<1%

Jose Maria A. Araujo, Alysson Cristiano E. de <1 o
Moura, Silvia Laryssa B. da Silva, Maristela ’
Holanda et al. "Comparative Performance
Analysis of NoSQL Cassandra and MongoDB
Databases", 2021 16th Iberian Conference on
Information Systems and Technologies (CISTI),

2021
Publication
archive.or

Internet Source g <1 %
ieeexplore.ieee.or

InternetSFczurce g <1 %

www.ukessays.com <1
Internet Source %

Submitted to Ghana Technology University <1 o
College ’
Student Paper

Alam Rahmatulloh, Irfan Darmawan, Rohmat <1 o
Gunawan. "Performance Analysis of Data ’
Transmission on WebSocket for Real-time
Communication”, 2019 16th International
Conference on Quality in Research (QIR):

International Symposium on Electrical and
Computer Engineering, 2019
Publication
Kun Ma, Bo Yang. "Stream-based live data <1 o
0

replication approach of in-memory cache",

Concurrency and Computation: Practice and
Experience, 2017

Publication

Exclude quotes Off Exclude matches Off
Exclude bibliography On

