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Abstract. Measuring vital body signals is essential to measure basic body functions, prevent 
misdiagnosis, detect underlying health problems and motivate healthy lifestyle changes. Vital body 
signals are measured at the fingertips because the skin is thin, and the blood vessels are transparent. 
Visible light is passed at the fingertips, and the pulses generated are still acceptable on the outer nail. 
However, the body's vital signal measuring device continuously attached to the fingertip causes 
discomfort to the user. Therefore, in this study, it is proposed to measure the body's vital signals in 
other body parts. The wrist was chosen to be attached to the body's vital signal measuring device 
because the measuring device attached to the wrist allows it to continue to be used. This study aims 
to measure the body's vital signals, especially heart rate, on the wrist so that the correlation level of 
the measurement data is known. The main contribution of this study is built an electronic system to 
measure vital body signals, especially heart rate at the wrist with the help of the MAX30102 sensor 
that uses visible light with 650 - 670 nm. The MAX30102 sensor, which uses visible light with 650 - 
670 nm, was selected for measurement. The ratio of the light reflected through the fingertips 
compared to the wrist. The result of measuring the heart rate signal on the wrist is in the form of a 
relatively flat wave so that the data sharpening process is carried out using the detrend method. The 
results showed that the measurement of heart rate signals at the wrist and fingertips of 15 respondents 
had accuracy 85%. The accuracy value shows that the data from the heart rate signal at the wrist is 
closely correlated with the data from the measurement of the heart rate signal at the fingertips. 
Therefore, measurements of heart rate signals, usually performed on the fingertips, can also be 
performed on the wrist. From the test results with a strong accuracy, measurements are always taken 
when the hand can measure the place to measure vital signals, which is usually done at the fingertips. 

Introduction 
The development of the instrument and electronic technology significantly contributes to observing 
various natural phenomena and phenomena in various fields, including industry, telecommunications, 
and health. One of the implementations of instrumentation technology that utilizes light sensors with 
variations in wavelength is the measurement of the body's vital signals. Measuring vital signals in the 
body is essential for measuring basic body functions, preventing misdiagnosis, detecting underlying 
health problems, and motivating healthy lifestyle changes. The unknown accuracy of the 
measurement results of the body's vital signals at the wrist is one of the exciting problems to be 
studied. 

During the COVID-19 pandemic, thermography which applies IR technology to detect the thermal 
distribution of an object, is widely used to detect human body temperature [1] [2][3]. MIR LEDs have 
been successfully applied in research for (1) quantification of clinical parameters in body fluids, (2) 
diagnosis and monitoring of cancer and other diseases by analysis of body fluids, cells, and tissues, 
and (3) classification of clinically relevant microorganisms, and (4) analysis of kidney stones, nails, 
and fecal fat[4] MIR LED use to exhaled breath analysis[5].  
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MIR LEDs also allow for the detection of blood glucose levels [6]. Several studies have also 
succeeded in applying NIR LEDs to brain activities such as autism spectrum disorder, attention-
deficit hyperactivity disorder, epilepsy, depressive disorders, anxiety and panic disorder, 
schizophrenia, mild cognitive impairment, Alzheimer's disease, Parkinson's disease, stroke[7], and 
traumatic brain injury[8][9]. NIR-LED is also widely used in detecting the body's blood sugar level 
[10]–[12]. NIR LED are also used for non-invasive measurement of right atrial pressure [13], 
cardiovascular[14][15],  heart rate [16]–[18] and blood pressure [19]–[22]. The use of IR in detecting 
vital body signals continues to grow, including using the Photoplethysmography (PPG) method.[23]–
[25]. Works based on pulse oximetry light method. PPG can be reflected or transmitted through skin, 
bone, or tissue. The original light emitted by the LED, IR, NIR, and MIR, penetrates the skin layer 
and is then reflected on the skin surface where the photodiode will receive it. The photodiode will 
measure the intensity of the light it receives and convert it into an electric current[26]. Furthermore, 
the various PPG-based studies involving infrared were carried out using different wavelengths. Hina 
uses the PPG method with NIR LED wavelengths of 1070nm, 950nm, and 935nm [27]. Then at 1850 
nm, 1710 nm, 1520 nm, and 1200 nm [28]. In addition, The IR emitted to the body will be transmitted 
and reflected to produce various data that can be used to analyze health conditions. Experiments on 
measuring the body's vital signals have been carried out in several different parts of the body, 
including fingertips[29], wrists[30], ear lobes[31], and arms[32]. Measurements from various body 
parts produce advantages and disadvantages related to accuracy, comfort, and function [33]. 
Measurement of vital body signals is often done at the fingertips because the fingertips are the thinnest 
part of the body. There are many nerve endings, and the light emitted can penetrate the nails [34]. 

However, the tool for measuring vital body signals at the fingertips that are continuously attached 
will cause inconvenience to the user. In addition to the fingertips, the wrists are other body parts 
widely used to measure the body's vital signals. The wrist was chosen to be tested in this study because 
the measuring device attached to the wrist allows it to be used continuously and is more convenient 
to wear[35]. The wrist is another body part that can place a sensor measuring vital body signals 
embedded in the watch. The implementation of the body signal measuring sensor on this watch 
produces a smart wearable device, making it a multi-functional device [36]. A smartwatch, which 
allows it to be used continuously throughout the day, has been used to obtain vital body signal data 
from sensors mounted on the bottom of the watch [37]. 

The main novelty of this research is built an electronic system to measure vital body signals, 
especially heart rate at the wrist with the help of the MAX30102 sensor that uses visible light with 
650 - 670 nm. In this study, the body's vital signals will be measured at the wrist and the fingertips. 
The data from measuring the body's vital signals at the wrist and fingertips will be recorded in a table, 
and the correlation value will be calculated.  

Methods 
In this study, the ability to process analog to digital from the MAX30102 is influenced by the ADC 
resolution of 18bit. So, the conversion of the ADC value to voltage can be seen as follows in Eq. (1). 
 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
218 − 1

𝑥𝑥 𝑉𝑉𝑠𝑠 
(1) 

where Vadc is the conversion voltage from the input ADC value. Then the ADC value is the value 
derived from the PPG signal and Vs is the MAX30102 source voltage. Meanwhile, to calculate the 
Heart Bit Rate (HBR) for 10 seconds can use Eq. (2). 
 

HBR =  60 x 𝑃𝑃10
𝑇𝑇𝑠𝑠

 (2) 

where Ts is the sampling time for 10 seconds and P10 is pulse for 10 seconds. The schematic of the 
heart bit rate using electronic circuit can be seen in Fig. 1. 
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Fig. 1. PPG circuit for the heart beat [38]  
 
The following equations (Eq. (3) to Eq. (6)) were generated from the suggested electrical equivalent 
circuit (See Fig. 1) [38]. 
 

  Ze(s) = SL1
1+𝑠𝑠2𝐿𝐿1𝐶𝐶1

 (3) 

Zd(s) =
SL2

1 + 𝑠𝑠2𝐿𝐿2𝐶𝐶2
 

(4) 

Z(s) = 𝑍𝑍𝑒𝑒(𝑠𝑠) + 𝑍𝑍𝑑𝑑(𝑠𝑠) (5) 

Z(s) = �
SL1

1 + 𝑠𝑠2𝐿𝐿1𝐶𝐶1
+

SL2
1 + 𝑠𝑠2𝐿𝐿2𝐶𝐶2

� 
(6) 

𝑉𝑉0(s) = 𝐼𝐼(𝑠𝑠)Z(𝑠𝑠)  
 
where Ze(s) is impedance offered by epidermis layer, Zd(s) is Impedance offered by dermis layer,  
Z(s) is total impedance offered by the layers, L1 is inductance offered by epidermis layer, L2 is 
inductance offered by dermis layer, C1 is Capacitance offered by epidermis layer, C2 is Capacitance 
offered by dermis layer, V0(s) is output voltage, and I(s) is current by the layers. Also, we obtained 
 

  I(s) = 𝑉𝑉𝑖𝑖(𝑠𝑠)−𝑉𝑉0(𝑠𝑠)
𝑟𝑟𝑐𝑐

 (7) 

𝑉𝑉0(s) = �
𝑉𝑉𝑖𝑖(𝑠𝑠) − 𝑉𝑉0(𝑠𝑠)

𝑟𝑟𝑐𝑐
�𝑍𝑍(𝑠𝑠) 

(8) 

𝑉𝑉0(s) = �
𝑉𝑉𝑖𝑖(𝑠𝑠) − 𝑉𝑉0(𝑠𝑠)

𝑟𝑟𝑐𝑐
� �

SL1
1 + 𝑠𝑠2𝐿𝐿1𝐶𝐶1

+
SL2

1 + 𝑠𝑠2𝐿𝐿2𝐶𝐶2
� 

(9) 

𝑉𝑉0(s) �
1
𝑟𝑟𝑐𝑐
� = �

SL1
1 + 𝑠𝑠2𝐿𝐿1𝐶𝐶1

+
SL2

1 + 𝑠𝑠2𝐿𝐿2𝐶𝐶2
� �
𝑉𝑉𝑖𝑖(𝑠𝑠)
𝑟𝑟𝑐𝑐

� 
(10) 
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𝑉𝑉0(s)
𝑉𝑉𝑖𝑖(𝑠𝑠)

= �
� SL1

1 + 𝑠𝑠2𝐿𝐿1𝐶𝐶1
+ SL2

1 + 𝑠𝑠2𝐿𝐿2𝐶𝐶2
�

(1 + 𝑟𝑟𝑐𝑐) � 

(11) 

 

Since (1 + 𝑟𝑟𝑐𝑐) is constant so 1
(1+𝑟𝑟𝑐𝑐) = 𝑘𝑘; we get 

 

𝑉𝑉0(s)
𝑉𝑉𝑖𝑖(𝑠𝑠)

= 𝑘𝑘 �
SL1

1 + 𝑠𝑠2𝐿𝐿1𝐶𝐶1
+

SL2
1 + 𝑠𝑠2𝐿𝐿2𝐶𝐶2

� 
(12) 

 
For unit step response 𝑉𝑉𝑖𝑖(𝑠𝑠) = 1

𝑠𝑠
, we obtained 

 

𝑉𝑉0(s) = 𝑘𝑘 �
L1

1 + 𝑠𝑠2𝐿𝐿1𝐶𝐶1
+

L2
1 + 𝑠𝑠2𝐿𝐿2𝐶𝐶2

� (13) 

𝑉𝑉0(s) = 𝑘𝑘 �
L1𝐶𝐶1

𝐶𝐶1(1 + 𝑠𝑠2𝐿𝐿1𝐶𝐶1)
+

L2𝐶𝐶2
𝐶𝐶2(1 + 𝑠𝑠2𝐿𝐿2𝐶𝐶2)

� (14) 

 

Taking Inverse Laplace Transform; 
 

𝑉𝑉0(𝑡𝑡) = 𝑘𝑘 �
sin w1(𝑡𝑡)

𝐶𝐶1
+

sin w2(𝑡𝑡)
𝐶𝐶2

� 
(15) 

 
where, 

𝑤𝑤1(𝑡𝑡) = �𝐿𝐿1𝐶𝐶1 and 𝑤𝑤2(𝑡𝑡) = �𝐿𝐿2𝐶𝐶2  
  

Since the heartbeat and the ac component of the PPG signal are synced, we know that the heartbeat 
is periodic. As a result, L2 and C2 should have values that  𝑤𝑤1 = 0.5𝑤𝑤2. So now the equation becomes 
[38]. 

 

𝑉𝑉0(𝑡𝑡) = 𝑘𝑘 �
sin𝑤𝑤 𝑡𝑡
𝐶𝐶1

+
sin 2𝑤𝑤 𝑡𝑡
𝐶𝐶2

� (16) 

 

where 𝑉𝑉0(t)is the output voltage in volts and rc is the resistance offered by cable. Ignore the "RC" 
since the Z value will be very high because the inductors are measured in millihenry (mH) and the 
capacitors are measured in Pico Farad (pF). Tests were carried out using the MAX 30102 sensor to 
determine the signals generated by the body from both the fingers and the wrist. This MAX30102 
sensor is attached to the LILYGO®TTGO. The LED MAX 30102 sensor consists of 2 pieces: a 
visible red LED with a wavelength of 660 nm and an infrared LED with a wavelength of 880 nm[39]. 
This LED sensor is used for High-Sensitivity Pulse Oximeter and Heart-Rate Sensor for Wearable 
Health[40]. This sensor is connected to the ESP32 as a microcontroller unit that displays, processes, 
and manages incoming data. Fig. 2 shows the circuit of MAX30102 connecting to ESP32. The MAX 
30102 sensor is embedded in the watch so that it is easy to use for detecting vital body signals because 
it is in direct contact with the wrist's skin. MAX30102 is also used to get a PPG signal[41]. 
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Fig.2 Connection MAX30102 and ESP 32 

 
On the LILYGO®TTGO smartwatch, the MAX30102 sensor is placed at the bottom. The LCD 

screen is at the top so that the measurement data can be easily seen. Measurements are carried out in 
two different positions, first by placing the fingertip above the MAX 30102 sensor for approximately 
3 minutes, the second by placing the MAX 30102 sensor on the wrist or using it as a watch and 
positioned silently in the plane of arrival parallel to the elbow for approximately 3 minutes. The 
sampling process is shown in Fig. 3. 

In Fig. 3(a), the test is carried out on the fingertips. In Fig. 3(b), the test is carried out on the arm. 
Respondents involved in the sampling amounted to 15 people. The respondents have age variations 
ranging from 20 to 46 years, with an unregulated gender ratio of women and men. The test was 
performed five times, and the graph with the best stability in its waveform was taken. 

 
(a) Fingertip Measurement  (b) Wrist Measurement 

Fig. 3 Signal data retrieval 
The detrend process can be seen in the flowchart in Fig. 4. The process begins with reading the 

ADC value from the MAX 30102 signal in *.xlsx data format for 10 seconds. The results show data 
per second as much as 37 points/second or 370 points per 10 seconds. The next step is to determine 
the waveform. The number of waves is determined manually by looking at the ppg wave plot and 
counting the number of waves. The more samples for one wave, the lower the frequency of the PPG 
wave. On the contrary, the fewer samples for one wave, the higher the frequency of the PPG wave. 
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A breakpoint is needed to carry out the detrending process, where the breakpoint is the boundary 

point of a linear wave. A breakpoint is the maximum or minimum value of a wave, where this 
breakpoint is a linear wave boundary without oscillation. Getting a breakpoint on data containing 
many samples representing the wave function value requires an iteration technique. The lowest values 
or valleys of PPG waves can be known with iteration.  

The iteration process follows the flowchart in Fig. 4. This iteration process is carried out to obtain 
the minimum values per period, which are the parameters of the PPG signal. Before performing the 
initialization iteration, setup is done on the index variable with a value of 0, the minimum value is 
infinite, and the wave valley is an empty array. As the iteration progresses, the wave valleys will be 
filled with breakpoints (wave valleys). Each iteration will check whether the value of Y with the 
current index is less than the minimum value. The minimum value equals Y with the current index if 
it is smaller than the minimum value. Iteration will also be checked whether the iteration has carried 
out the iteration process as many as multiples of the wave sample. If true, the wave trough array 
variable is added to the minimum value variable data. After that, the minimum value is reset back to 
infinity. So that every single wave trough variable gets a new minimum value or breakpoint after the 
index is equal to many samples, it indicates the iteration process is complete, and the breakpoint for 
the detrending process is ready to be used. Detrend was also carried out on the Y variable with the 
detrend type, linear, and breakpoint from the wave valley variable.  

This algorithm is simulated with MATLAB. By default, MATLAB has a detrend function but is 
limited to linear detrending (piece-wise) by subtracting from the data the least squares match result 
from a straight line to the data [42]. Therefore, the detrend algorithm was created manually, and the 
input data comes from a file with *.xlsx format.  

 
START

Y = array data ADC 
from excel

NumberofSampel = number sample/10 s
NumberofWave = number wave/10 s
WaveSample = Number sample/wave

Index = 0
Min ≈ lowest wave = []

Index = index + 1

Y(index) < Min

Min =  Y(index)

Index = multiple 
WaveSample

Lowest wave = […, min]

Min =  ∞ 

Index = 
NumberofSampel

Breakpoint = lowest wave

Y_detrend = detrend9y,1,breakpoint)

Plot Y_detrend

END

No

Yes

No

Yes

No

Yes

 
Fig. 4 Detrend Flowchart 
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Result 
In this work, the normality of the data distribution was tested using the Shapiro Wilk test because the 
number of samples was small (<50). The results of the Shapiro Wilk test show that the p value for the 
fingertips variable is 0.973, which means that the data is normally distributed. The wrist variable p 
value is 0.011, which means that the data is not normally distributed (See Table 1). Because there is 
one variable that is not normally distributed, the different test uses the Mann Whitney test.  

 
Table. 1 Test of Normality 

 

Test Normality 
 Statistics df Sig. Statistics df Sig. 

Fingertip 0.145 15 0.200* 0.981 15 0.973 
Wrist 0.250 15 0.012 0.837 15 0.011 

 *. This is a lower bound of the true significance 
 a. Lilliefors Significance Correction 

 

In this work, the Mann-Whitney is statistical tests to compare two independent groups that do not 
require large normally distributed samples. This test has the great advantage of possibly being used 
for small samples of subjects (five to 20 participants). It can also be used when the measured variables 
are of ordinal type and were recorded with an arbitrary and not a very precise scale. Furthermore, the 
Mann Whitney test results obtained p-value of 0.769, meaning that there is no difference in the results 
of the tests carried out at the fingertips and wrist. The Mann Whitney test can be seen in Table 2. 

 
Table 2. The Mann Whitney test 

 Checkpoint N Mean Rank Sum of Rank 
Results Fingertip 15 15.97 239.50 
 Wrist 15 15.03 225.50 
 Total 30   
     
Test Statistics Results    
Mann Whitney U 105.500    
Wilcoxon W 225.500    
Z -0.294    
Asym.sig (2 tailed) 0.769    
Exact Sig. (2*(1 tailed sig)) 0.775b    
a. Grouping variables: Checkpoint 
b. Not Corrected for Ties 

 

The data from the signal measurement at the fingertips produces a more stable waveform than the 
data from the signal measurement at the wrist, as shown in Fig. 5. The stable signal is made stable by 
eliminating oscillatory interference. This oscillation occurs due to external disturbances such as 
unwanted arm movement or the condition of the respondent's activities that interfere with the signal. 
A wave engineering process called detrend carried out to eliminate the oscillation. Detrend is 
smoothing wave crests and troughs with the same peak-to-peak value. Detrended fluctuation analysis 
(DFA) is an effective model for measuring non-stationary time series autocorrelation. It is mainly 
used to minimize the influence of external trends on autocorrelation by calculating detrended 
fluctuations [43]. This DFA process is also carried out in PPG signals for skin blood pulsation and 
Electrocardiographic[44][45]. The wave oscillation due to instability can be seen in Fig. 6. 
 

Journal of Biomimetics, Biomaterials and Biomedical Engineering Vol. 59 137



 

 
 

Fig. 5 Comparison of measurements on finger and wrist 
 

 
 

Fig. 6 Data oscillation of heart rate on the wrist 
 

Fig. 7(a) shows the PPG signal with 370 data samples on the first respondent's finger. With a 
sampling rate of 37 per second, the selected data represents the measurement for 10 seconds. This 
shows that the 14 wave crests on the graph determine the respondent's heart rate in 10 seconds. This 
ppg signal capture on the finger has minimal noise but has a fluctuating offset. Meanwhile, Fig. 7 (b) 
shows the results of the detrend process in MATLAB to eliminate offsets in Fig. 7 (a). After the 
detrend offset process on the wave, the signal has a more constant characteristic and the wave crest 
does not change. 

Fig. 7 (c) shows the ppg signal with 370 data samples on the wrist of the first respondent. With a 
sampling rate of 37 per second, the selected data represents the measurement for 10 seconds. This 
means that 13.5 wave crests on the graph determine the respondent's heart rate in 10 seconds. The 
ppg signal capture on the wrist has more noise than the finger ppg signal in Fig. 7 (a) and the offset 
tends to be linear down. Meanwhile, Fig. 7(d) presents the results of the detrend process in Matlab to 
eliminate offsets in Fig. 7(c). After the detrend offset process on the wave, the signal becomes much 
more constant horizontally and the number of wave crests does not change, which is 13.5.  
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(a) Fingertips Measurement (Data RAW) (b) Finger Tips Measurement (Detrend Result) 

  
(c) Wrist Measurement (Data RAW) (d) Wrist Measurement (Detrend Result) 

 

Fig. 7 The process of changing waves using detrend first and third respondent  

Discussion 
The detrend process or signal wave improvement has been carried out by measuring the body's vital 
signals at the fingertips and wrists using the MAX30102 sensor. The calculation results show that the 
measurement of signals on the wrist and fingertips with 15 respondents has accuracy value of 82%. 
Therefore, vital signal measurements, usually performed at the fingertips, can also be performed at 
the wrist. From the results of detrend using MATLAB, the fingertips are equal to data from getting 
hands. This detrend process is carried out numerically with the algorithm in Fig. 5 and Fig. 7. The 
drawback is that the signal must be converted based on time units and saved in csv or xlsx format to 
produce a detrend process causes the detrend process cannot be carried out immediately, it takes a 
process to convert the detected signal into an xlsx or CSV file. 

Rajala [46]compares the wrist and fingertip PPG signals. The process proves that the fingertip's 
value is greater than the wrists. Test one also compares the different PATs between fingertips and 
wrists but does not discuss the detrend process to determine the number of valleys of the studied 
signal period. Tsai [47] performed the decomposition process of PPG signals originating from the 
wrist and fingertips with the variant method of Pulse Decomposition Analysis by analyzing them one 
by one to obtain a significant correlation between signals from the wrist and fingers. 

The obstacle in this implementation is the limited number of respondents because it is still in a 
covid situation, so it is pretty complex that the number of respondents is limited. In addition, the 
development of tools with wider test implementation should continue to be the main focus of this 

823

824

825

826

827

828

829

830

0 30 60 90 120150180210240270300330360

V
ol

ta
ge

 (m
V

)

Sample

-4

-3

-2

-1

0

1

2

3

0 30 60 90 120150180210240270300330360

V
ol

ta
ge

 (m
V

)

Sample

706.6
706.8

707
707.2
707.4
707.6
707.8

708
708.2
708.4

0 30 60 90 120150180210240270300330360

V
ol

ta
ge

 (m
V

)

Sample

-0.2

-0.1

0

0.1

0.2

0.3

0 30 60 90 120150180210240270300330360

V
ol

ta
ge

 (m
V

)

Sample

Journal of Biomimetics, Biomaterials and Biomedical Engineering Vol. 59 139



 

study. The results of the research carried out strengthen the assumption that one day with data 
engineering with ppg signal processing on the MCU portable, the signal from the wrist will be able 
to match the signal from the finger, and measurements can be carried out continuously without 
impeding human movement, and user comfort can be protected.  

Conclusion 
The main purpose of this study is to measure the body's vital signals, especially heart rate, on the 
wrist so that the correlation level of the measurement data is known. The MAX30102 sensor, which 
uses visible light with 650 - 670 nm, was selected for measurement. The ratio of the light reflected 
through the fingertips compared to the wrist. The main finding of this study is built an electronic 
system to measure vital body signals, especially heart rate at the wrist based on the MAX30102 
sensor. the results showed that the measurement of heart rate signals at the wrist and fingertips of 15 
respondents has accuracy 85%. This result reinforces the notion that signals from the wrist have the 
same significance as signals from the fingertips. In the future, data retrieval can be done simply from 
the wrist so that it does not interfere with the wearer's activities and work comfort. 
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